Dang Minh Tan * , Pham Thanh Hieu , Nguyen Huu Toan and Ha Ngan Ha

* Corresponding author (tandang1412@gmail.com)

Main Article Content

Abstract

We present molecular dynamics (MD) simulations of 3D simple monatomic supercooled liquid and glassy states obtained by cooling from liquid to glassy state. Models contain 2744 particles interacted via Lennard-Jones-Gauss potential. Evolution of structure and various thermodynamic properties upon cooling from liquid to glassy state is analyzed in detail via radial distribution function (RDF), temperature dependence of potential energy, mass density, time – temperature dependence of mean - squared displacement (MSD), coordination number distribution, bond-angle distribution, fraction of solidlike atoms and 3D visualization of atomic configurations. Via intensive MD simulation of glass formation in 3D simple supercooled liquids we find that fraction of solidlike atoms (i.e. with the slowest mobility) increases monotonously with a sudden increase in the vicinity of glass transition reaching almost 100% at low temperature to form a solid glassy state. 
Keywords: Dynamical heterogeneity, collective dynamics, glass formation, dynamics of supercooled liquids

Article Details

References

Kim, A.V., Medevdev, N.N., 2006. Melting and homogeneous crystallization of a Lennard-Jones system, Journal of Structural Chemistry, 47(1): S141-S150.

Belashchenko, D.K., 1997. Computer simulation of the structure and properties of non-crystaline oxides. Russian chemical reviews, 66(9): 733-762.

Heyes, D.M., Barber, M. and Clarke, J.H.R., 1977. Molecular dynamics computer simulation of surface properties of crystalline potassium chloride. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 73(7): 1485-1496.

Donth, E., 2001. The Glass Transition: Relaxtion Dynamics in Liquids and Disordered Material. Springer-Verlag Berlin Heidelberg, 418 pages.

Doye, J.P., 2003. A model metal potential exhibiting polytetrahedral clusters. The Journal of chemical physics, 119(2): 1136-1147.

Engel, M., Trebin, H.-R., 2007. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Physical review letters, 98(22): 225505-225508.

Flores-Ruiz, H.M., Naumis, G.G., 2009. Excess of low frequency vibrational modes and glass transition: A molecular dynamics study for soft spheres at constant pressure. The Journal of chemical physics, 131(15): 154501.

Honeycutt, J.D., and Andersen, H.C., 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of physical chemistry. 91(19): 4950-4963.

Jones, J.E., 1924. On the determination of molecular fields. -II. From the equation of state of a gas. Proc. R. Soc. Lond. A, 106(738): 463-477.

Lindemann, F.A., 1910. Uber die berechnung molekularer eigenfrequenzen. Physikalische Zeitschrift. 11: 609-612.

Mizuguchi,T., and Odagaki, T., 2009. Glass formation and crystallization of a simple monatomic liquid. Physical Review E, 79(5): 051501.

Dzugutov, M., 1992. Glass formation in a simple monatomic liquid with icosahe-dral inherent local order. Physical Review A, 46(6): R2984.

Balbuena, P., and Seminario, J.M. (Eds.). (1999). Molecular dynamics from classical to quantum methods (Vol. 7). Elsevier.

Stillinger, F.H., 1995. A topographic view of supercooled liquids and glass formation. Science, 267(5206): 1935-1939.

Tomida, T., and Egami, T., 1995. Molecular-dynamics study of orientational order in liquids and glasses and its relation to the glass transition. Physical Review B, 52(5): 3290.

Van Hoang, V., and Odagaki, T., 2008. Glasses of simple liquids with double-well interaction potential. Physica B: condensed Matter, 403(21-22): 3910-3915.

Hoang, V.V., and Odagaki, T., 2011. Glass formation and thermodynamics of supercooled monatomic liquids. The Journal of Physical Chemistry B, 115(21): 6946-6956.

Van Hoang, V., Teboul, V., and Odagaki, T., 2015. New scenario of dynamical heterogeneity in supercooled liquid and glassy states of 2D monatomic system. The Journal of Physical Chemistry B, 119(51): 15752-15757.

Most read articles by the same author(s)