Chau Thi Anh Thy *

* Corresponding author (ctathy@ctu.edu.vn)

Main Article Content

Abstract

Organochlorine compounds are released in the environment by many sources such as industrial pollution, naturally in marine sponge’s metabolism or agricultural application (pesticides). These compounds can have carcinogenic and lethal effects on human health through an ability to concentrate in biota and magnify in the food chain. In recent years, interest in the microbial biodegradation of pollutants has intensified as effective applications to find sustainable ways to clean up contaminated environments. Enhancing the growth of microbes might already be living at the contaminated site and to add specialized microbes have ability to degrade the contaminants become a common technique known as bioremediation. Understanding how microbial communities metabolize and respond to contaminants is the key to predicting contaminant fate at contaminated sites in bioremediation. The organohalide respiration process under anaerobic conditions involves a consortium of many microorganisms working together with complex relationships known as syntrophy. Syntrophic relationships, such as those observed between fermentative bacteria and methanogens, is an obligate form of mutualism in which both partners are dependent on each other. Syntrophic interactions are a unique niche in nature and play an important role in carbon cycling under anoxic conditions. Associations of syntrophic fermentative organisms and partners that consume fermentation products contribute to the anaerobic biodegradation of organochlorines. Addition of substrates that ferment to H2 to stimulate reductive dechlorination have been demonstrated to be effective in bioremediation applications. However, due to changes in community structure and difficulties in studying the function of individual populations in defined culture, our understanding of syntrophic interactions is still limited.
Keywords: Anaerobic respiration, bioremediation, organochlorine, syntrophy

Article Details

References

Adrian, L. & Loffler, F. E., 2016. Organohalide-respiring bacteria. First edition. Springer-Verlag Berlin Heidelberg publishing, Berlin. 632 pages.

Adrian, L., Hansen, S. K., Fung, J. M., Gorisch, H. & Zinder, S. H., 2007. Growth of Dehalococcoides Strains with Chlorophenols as Electron Acceptors. Environmental Science & Technology. 41(7): 2318-2323.

Adrian, L., Szewzyk, U., Wecke, J. & Gorisch, H., 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature. 408(6812): 580-583.

ATSDR, Agency for Toxic Substances and Disease Registry, 2015. Toxicological profile for hexachlorobenzene. Available from https://www.atsdr.cdc.gov/toxprofiles/tp90.pdf.

Alfan-Guzman, R., 2016. Anaerobic biodegradation of chlorinated benzenes. PhD thesis, University of New South Wales, Australia.

Baker, H. A., 1940. Study upon the methane fermentation. Martin Dworkin, Stanley Falkow and Eugene Rosenberg (Eds.). In: The isolation and culture of Methanobacillus omelianskii (3rd edition). Springer Singarpore. pp. 20-31.

Barber, J. L., Sweetman, A. J., Van Wijk, D. & Jones, K.C., 2005. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Science of the total environment, 349(1-3): 1-44.

Barber, J. L., Sweetman, A. J., Van Wijk, D., & Jones, K. C.. 2005. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Science of the total environment, 349(1-3), 1-44.

Becker, J. G., Berardesco, G., Rittmann, B. E. & Stahl, D. A., 2005. The role of syntrophic associations in sustaining anaerobic mineralization of chlorinated organic compounds. Environmental Health Perspect. 113(3): 310-316.

Biebl, H. & Pfennig, N., 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archive Microbiology. 117(1): 9–16.

Bryant, M.P., Wolin, E.A., & Wolin, M.J., 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archive Microbiology. 59: 20-31.

Bunge, M., Adrian, L., Kraus, A., et al., 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature. 421(6921): 357-360.

Dolfing, J., 2016. Energetic considerations in organohalide respiration. In: Adrian, L., Löffler F.E. (Eds.). Organohalide-respiring bacteria. Springer-Verlag Berlin Heidelberg publishing. Berlin, pp. 31-50.

Drzyzga, O., 2001. Coexistance of sulfate reducing Desulfovibro species and the halorespiring TCE1. Environmental Microbiology. 3(2): 92-99.

Eichler, B. & Schink, B., 1985. Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Archive Microbiology. 143(1): 60-66.

Fennell, D. E., Nijenhuis, I., Wilson, S. F., Zinder, S. H. & Haggblom, M. M., 2004. Dehalococcoides ethenogenes Strain 195 Reductively Dechlorinates Diverse Chlorinated Aromatic Pollutants. Environmental Science & Technology. 38(7): 2075-2081.

Goris, T., Schiffmann, C. L., Gadkari, J., et al., 2015. Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci Rep, 5(1): 13794.

He, J., Holmes, V. F., Lee, P. K. & Alvarez-Cohen, L., 2007. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied Environmental Microbiology. 73(9): 2847-53.

He, J., Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M. & Loffler, F. E. 2002. Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sites. Environmental Science & Technology, 36: 3945-3952.

Holliger, C. & Schumacher, W., 1994. Reductive dehalogenation as a respiratory process. Antonie van Leeuwenhoek, 66(1): 239 – 246

Hug, L. A., Maphosa, F., Leys, D., et al., 2013. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philosophical Transactions of the Royal Society of London. 368(1616): 2012-2022.

Kruse, T., Van De Pas, B. A., Atteia, A. et al., 2015. Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. Journal of Bacteriol. 197(5): 893-904.

Kublik, A., Deobald, D., Hartwig, S., et al., 2015. Identification of a multiprotein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environmental Microbiology. 18(9): 3044-3056.

Lee, M., Low, A., Zemb, O., et al., 2012. Complete chloroform dechlorination by organochlorine respiration and fermentation. Environmental Microbiology. 14(4): 883-894.

Leri, A.C., Marcus, M.A. & Myneni, S.C.B., 2007. X-ray spectromicroscopic investigation of natural organochlorine distribution in weathering plant material. Geochimica et Cosmochimica Acta. 71(23): 5834-5846.

Loganathan, B. G., & Kannan, K., 1994. Global organochlorine contamination trends: an overview. Ambio. 23: 187–191.

Mao, X., Stenuit, B., Polasko, A. & Alvarez-Cohen, L., 2015. Efficient Metabolic Exchange and Electron Transfer within a Syntrophic Trichloroethene-Degrading Coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. Applied Environmental Microbiology. 81(6): 2015-2024.

Max, H. & Bossert, I. D., 2003. Halogenated Organic Compounds - A Global Perspective. In: Häggblom, M. M. & Bossert, I. D. (Eds.). Dehalogenation: Microbial Processes and Environmental Applications. Boston, MA: Springer US.

Max, H. Donna, F., Lisa, R. N. & Lee, K., 2012. Quantifying Enhanced Microbial Dehalogenation Impacting the Fate and Transport of Organohalide Mixtures in Contaminated Sediments. SERDP Project ER-1492.

Maymo-Gatell, X., Chien, Y.-T., Gossett, J. M. & Zinder, S. H., 1997. Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene. Science, 276(5318): 1568-1579.

McInerney, M. J., Struchtemeyer, C. G., Sieber, J., et al. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Annals of the New York Academy of Sciences, 1125, 58-72.

McCarty, P. L., 1997. Breathing with chlorinated solvents. Science, 276(5318): 1521-1532.

Meharg, A.A. & Osborn, D., 1995. Dioxins released from chemical accidents. Nature. 375: 353–354

Men, Y., Feil, H., Verberkmoes, N. C., et al., 2012. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J, 6: 410-21.

Men, Y., Johnson, D. R., Andersen, G. L. et al., 2011. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. International Society for Microbial Ecology (ISME) 1751-7362: 1-12.

Mohn, W.W. & Tiedje, J.M., 1992. Microbial reductive dehalogenation. Microbiology Review. 56(2): 482–507.

MONRE, Ministry of Natural Resources and Environment, 2006. Vietnam National Implementation Plan: For Stockholm Convention on Persistent Oragnic pollutants. http://www.pops.int/documents/implementation/nips/submissions/NIP_Vietnam.pdf

Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiology Review. 37(3): 384-406.

Naoko, Y., Lizhen, L., Fengmao, L. & Zhiling, L., 2013. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species. Bioresourses Technology. 130(1): 478-485.

Plugge, C. M., Jiang, B., De Bok, F. A., Tsai, C. & Stams, A. J., 2009. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Archive Microbiology. 191(1): 55-61.

Plugge, C. M., Scholten, J. C., Culley, D. E., Nie, L., Brockman, F. J. & Zhang, W., 2010. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Microbiology, 156(9): 2746-56.

Reineke, W., Mandt, C., Kaschabek, S. R. & Pieper, D. H., 2001. Chlorinated Hydrocarbon Metabolism. eLS. John Wiley & Sons, Ltd.

Rupakula, A., Lu, Y., Kruse, T., et al., 2014. Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Frontier in Microbiology. 5(1): 751-68.

Ruth, S. & Paul, J., 2001. Industry Chlorine manufacture. In: Chlorine and the Environment: An Overview of the Chlorine Industry. Springer Netherlands, pp. 1-24.

Schiffmann, C. L., Jehmlich, N., Otto, W., et al., 2014. Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. J Proteomics. 98: 59-64.

Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews. 61(2): 262-282 .

Schmidt, A., Muller, N., Schink, B. & Schleheck, D., 2013. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS One, 8(2): e56905.

Scholten, J. C., Culley, D. E., Brockman, F. J., Wu, G. & Zhang, W., 2007. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: Involvement of an ancient horizontal gene transfer. Biochemical and Biophysical Research Community. 352(1): 48-54.

Shelton, D. R & Tiedje, J. M., 1984. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid. Applied and Environmental Microbiology. 48(4): 840-848.

Sieber, J. R., Crable, B. R., Sheik, C. S., et al., 2015. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei. Frontier in Microbiolog. 6(2): 115 - 124.

Sieber, J. R., Le, H. M. & Mcinerney, M. J., 2014. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environmental Microbiology. 16(1): 177-88.

Sinh, N.N., Thuy, L.T.B., Kinh, N.K., & Thang, L.B., 1999. The persistent organic pollutants and their management in Vietnam. In: Proceedings of the Regional Workshop on the Management of Persistent Organic Pollutants – POPs, UNEP, Hanoi, Vietnam, pp. 385-406.

Torsten, S. & Gabriele D. 2016. Comparative Biochemistry of Organohalide Respiration. In: Adrian, L., Löffler F.E. (Eds.). Organohalide-respiring bacteria. Springer-Verlag Berlin Heidelberg publishing. Berlin, p397-427.

Yan, J., Ritalahti, K. M., Wagner, D. D. & Loffler, F. E., 2012. Unexpected Specificity of Interspecies Cobamide Transfer from Geobacter spp. to Organohalide-Respiring Dehalococcoides mccartyi Strains. Applied and Environmental Microbiology. 78(18): 6630-6636.

Zhou, J., He Q., Hemmer C. L. et al., 2011. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Review in Nature. 9: 452-466

Zhuang, W. Q., Yi, S., Bill, M., et al., 2014. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proceedings of the National Academy of Sciences of the United States of America. 111(17): 6419-6424.