Effects of foliar application of zinc sulfate on growth, yield and essential oil of Perilla (Perilla frutescens L.) and holy basil (Ocimum sanctum L.)
Main Article Content
Abstract
This study was conducted on gray soil at the research station of the Faculty of Agronomy, Nong Lam University - Ho Chi Minh City, Viet Nam. The objective of the study was to investigate the effects of foliar zinc sulfate application on perilla and holy basil cultivation. For perilla, several morphological characteristics, including plant height, stem diameter, leaf length, leaf width, and leaf number on the main stem, showed statistically significant differences between the control and the 2.0 g/L ZnSO4.7H2O treatment. In contrast, only plant height in holy basil was significantly affected by ZnSO4.7H2O spray at 30 days after cutting. Regarding other physiological traits, both perilla and holy basil were able to maintain high levels of chlorophyll, carotenoid, total protein, and essential oil content. These findings suggest that zinc supplementation via foliar nutrition is a promising approach to improve not only agricultural yield but also the economic efficiency of medicinal plant cultivation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmad, W., Nepal, J., Xin, X., & He, Z. (2023). Agronomic Zn biofortification through nano ZnO application enhanced growth, photosystem efficiency, Zn and P nutrition in maize. Archives of Agronomy and Soil Science, 69(14), 3328–3344. https://doi.org/10.1080/03650340.2023.2231350
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548. https://doi.org/10.1007/s10653-009-9255-4
Al-Zahrani, H. S., Nahar, K., Alharby, H. F., Alsamadany, H., Hakeem, K. R., & Hasanuzzaman, M. (2022). Zinc supplementation enhances glutathione-mediated antioxidant defense and glyoxalase systems to conferring salt tolerance in soybean (Glycine max L.). Agronomy, 12(5), 1032. https://doi.org/10.3390/agronomy12051032
Bayram, S. E., İsfendiyaroğlu, M., & Tuncay, Ö. (2022). Effects of foliar zinc applications on some yield parameters and essential oil constituents of the mastic tree (Pistacia lentiscus var. chia Duham.). Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100431. https://doi.org/10.1016/j.jarmap.2022.100431
Cakmak, I. (2000a). Tansley Review No. 111. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
Cakmak, I. (2000b). Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
Chen, X.-P., Zhang, Y.-Q., Tong, Y.-P., Xue, Y.-F., Liu, D.-Y., Zhang, W., Deng, Y., Meng, Q.-F., Yue, S.-C., Yan, P., Cui, Z.-L., Shi, X.-J., Guo, S.-W., Sun, Y.-X., Ye, Y.-L., Wang, Z.-H., Jia, L.-L., Ma, W.-Q., He, M.-R., … Zou, C.-Q. (2017). Harvesting more grain zinc of wheat for human health. Scientific Reports, 7(1), 7016. https://doi.org/10.1038/s41598-017-07484-2
Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 26(6), 913–924. https://doi.org/10.1007/s10534-013-9667-6
García-Gómez, C., Obrador, A., González, D., Babín, M., & Fernández, M. D. (2018). Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Science of The Total Environment, 644, 770–780. https://doi.org/10.1016/j.scitotenv.2018.06.356
Ghanepour S, Shakiba M-R, Toorchi M, & Oustan S. (2015). Role of Zn nutrition in membrane stability, leaf hydration status, and growth of common bean grown under soil moisture stress. Journal of Biodiversity and Environmental Sciences, 6(4), 9–20. https://www.researchgate.net/publication/308650223_Role_of_Zn_nutrition_in_membrane_stability_leaf_hydration_status_and_growth_of_common_bean_grown_under_soil_moisture_stress
Jalil, S., Nazir, M. M., Ali, Q., Zulfiqar, F., Moosa, A., Altaf, M. A., Zaid, A., Nafees, M., Yong, J. W. H., & Jin, X. (2023). Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: An overview. Functional Plant Biology, 50(11), 870–888. https://doi.org/10.1071/FP23021
Joy, E. J. M., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1–2), 1–24. https://doi.org/10.1007/s11104-015-2430-8
Khan, M. R., & Siddiqui, Z. A. (2021). Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani. Horticulture, Environment, and Biotechnology, 62(2), 225–241. https://doi.org/10.1007/s13580-020-00312-z
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and Characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1). https://doi.org/10.1002/0471142913.faf0403s01
Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (Marschner Petra, Ed.; 2nd ed.). Elsevier. https://doi.org/10.1016/C2009-0-63043-9
Mazaheri Tirani, M., Madadkar Haghjou, M., & Ismaili, A. (2019). Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Functional Plant Biology, 46(4), 360. https://doi.org/10.1071/FP18076
Moghimipour, Z., Sourestani, M. M., Ansari, N. A., & Ramezani, Z. (2017). The Effect of foliar application of Zinc on essential oil content and composition of Holy Basil [Ocimum sanctum] at first and second harvests. Journal of Essential Oil Bearing Plants, 20(2), 449–458. https://doi.org/10.1080/0972060X.2017.1284609
Mun, H. I., Kim, Y. X., Suh, D. H., Lee, S., Singh, D., Jung, E. S., Lee, C. H., & Sung, J. (2020). Metabolomic response of Perilla frutescens leaves, an edible-medicinal herb, to acclimatize magnesium oversupply. PLOS ONE, 15(7), e0236813. https://doi.org/10.1371/journal.pone.0236813
Nekoukhou, M., Fallah, S., Pokhrel, L. R., Abbasi-Surki, A., & Rostamnejadi, A. (2024). Foliar co-application of zinc oxide and copper oxide nanoparticles promotes phytochemicals and essential oil production in dragonhead (Dracocephalum moldavica). Science of the Total Environment, 906, 167519. https://doi.org/10.1016/j.scitotenv.2023.167519
Pham, H., Thao X. Nguyen, Nhat P. Nguyen, Tan N. C. Tran, Quang L. Thanh, Truong V. Nguyen, & Nguyen, T. T. H. (2022). Effect of three different organic fertilizers on growth, yield, and essential oil content of basil (Ocimum basilicum var. pilosum). The Journal of Agriculture and Development, 21(3). https://doi.org/10.52997/jad.3.03.2022
Shahrajabian, M. H., Sun, W., & Cheng, Q. (2022). Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 26. https://doi.org/10.1186/s43088-022-00210-6
Shemi, R., Wang, R., Gheith, E.-S. M. S., Hussain, H. A., Hussain, S., Irfan, M., Cholidah, L., Zhang, K., Zhang, S., & Wang, L. (2021). Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports, 11(1), 3195. https://doi.org/10.1038/s41598-021-82264-7
Sheoran, P., Grewal, S., Kumari, S., & Goel, S. (2021). Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatalysis and Agricultural Biotechnology, 32, 101938. https://doi.org/10.1016/j.bcab.2021.101938
Song, Y., Jiang, M., Zhang, H., & Li, R. (2021). Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors. Molecules, 26(8), 2196. https://doi.org/10.3390/molecules26082196
Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110. https://doi.org/10.1016/j.jhazmat.2018.01.040
Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B., & Ramezanian, A. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turkish Journal of Agriculture and Forestry, 34(4):349–359.
https://doi.org/10.3906/tar-0905-10
Vietnam Institute of Meteorology, Hydrology and Climate Change. (2023a). Agrometeorological Bulletin, April 2023.
https://imh.ac.vn/wp-content/uploads/2023/04/Bantin_KTNN_T4_2023.pdf
Vietnam Institute of Meteorology, Hydrology and Climate Change. (2023b). Agrometeorological Bulletin, June 2023.
https://imh.ac.vn/wp-content/uploads/2023/06/dubao_khituongnongnghiep_thang_6_nam2023.pdf
Vietnam Institute of Meteorology, Hydrology and Climate Change. (2023c). Agrometeorological Bulletin, March 2023.
https://imh.ac.vn/wp-content/uploads/2023/03/Bantin_KTNN_T3_2022.pdf/
Vietnam Institute of Meteorology, Hydrology and Climate Change. (2023d). Agrometeorological Bulletin, May 2023.
https://imh.ac.vn/wp- content/uploads/2023/05/Bantin_KTNN_T5_2023.pdf
Vojodi Mehrabani, L., Kamran, R. V., Hassanpouraghdam, M. B., & Pessarakli, M. (2017). Zinc sulfate foliar application effects on Some physiological characteristics and phenolic and essential oil contents of Lavandula stoechas L. under Sodium Chloride (NaCl) salinity conditions. Communications in Soil Science and Plant Analysis, 48(16), 1860–1867. https://doi.org/10.1080/00103624.2017.1406105
Wang, R., Sun, L., Zhang, P., Wan, J., Wang, Y., & Xu, J. (2023). Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regulation, 100(1), 85–96. https://doi.org/10.1007/s10725-022-00938-2
Wu, X., Dong, S., Chen, H., Guo, M., Sun, Z., & Luo, H. (2023). Perilla frutescens: A traditional medicine and food homologous plant. Chinese Herbal Medicines, 15(3), 369–375. https://doi.org/10.1016/j.chmed.2023.03.002
Yu, H., Qiu, J.-F., Ma, L.-J., Hu, Y.-J., Li, P., & Wan, J.-B. (2017). Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food and Chemical Toxicology, 108, 375–391. https://doi.org/10.1016/j.fct.2016.11.023
Žabka, M., Pavela, R., Kovaříková, K., Tříska, J., Vrchotová, N., & Bednář, J. (2021). Antifungal and insecticidal potential of the essential oil from Ocimum sanctum L. against dangerous fungal and insect species and its safety for non-target useful soil species Eisenia fetida (Savigny, 1826). Plants, 10(10), 2180. https://doi.org/10.3390/plants10102180