Study on fermentation conditions for bioethanol production from cocoa pod hydrolysate
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Adeleke, E.O., Bridget, O.O., Isaac, O.A., Mufutau, K.B., 2012. Purification and characterization of a cellulase obtained from cocoa (Theobroma cacao) pod-degrading Bacillus coagulans co4. Turkish Journal of Biochemistry. 37(2): 222-230.
Bennett, C., 1971. Spectrophotometric acid dichromate method for the determination of ethyl alcohol. The American Journal of Medical Technology. 37(6): 217.
Duku, M.H., Gu, S., Hagan, E.B., 2011. A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews. 15(1): 404-415.
Galazzo, J.L., Bailey, J.E., 1990. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme and Microbial Technology. 12(3): 162-172.
Hoa, N.V., 2007. Overview: the present and future cocoa plantation and production in Vietnam. Substantial Cocoa Development in Vietnam Workshop. Ben Tre, Vietnam (in Vietnamese).
Laluce, C., Schenberg, A.C.G., Gallardo, J.C.M., Coradello, L.F.C., Pombeiro-Sponchiado, S.R., 2012. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - A Review. Applied Biochemistry and Biotechnology. 166(8): 1908-1926.
Lam, F.H., Ghaderi, A., Fink, G.R., Stephanopoulos, G., 2014. Engineering alcohol tolerance in yeast. Science. 346(6205): 71-75.
Orlandi, I., Ronzulli, R., Casatta, N., Vai, M., 2013. Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging. Oxidative Medicine and Cellular Longevity. (ID 802870): 1-10.
Pampulha, M.E., Loureiro-Dias, M.C., 1989. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Applied Microbiology and Biotechnology. 31(5-6): 547-550.
Pham, L.D., 2009. Industrial Yeasts. Science and Technology Publishing House, Hanoi, Vietnam (in Vietnamese).
Phong, H.X., Quan, P.T. Quan, Thanh, N.N., Dung, N.T.P., 2015. Study on the possibility of hydrolysis of cocoa pod for ethanol fermentation. Dong Thap University Journal of Science. 16: 92-96 (in Vietnamese).
Stanley, D., Bandara, A., Fraser, S., Chambers, P.J, Stanley, G.A., 2010. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology. 109(1): 13-24.
Tasun, K., Chose, P., Ghen, K., 1970. Sugar determination of DNS method. Biotechnology and Bioengineering. 12: 921.
Thomsen, S.T., Kádár, Z., Schmidt, J.E., 2014. Compositional analysis and projected biofuel potentials from common West African agricultural residues. Biomass and Bioenergy. 63: 210-217.
Trumbly, R.J., 1992. Glucose repression in the yeast Saccharomyces cerevisiae. Molecular Microbiology. 6(1): 15-21.
van Maris, A.A., Abbott, D.A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M.H., Wisselink, H.W., Scheffers, W.A., van Dijken, J.P., Pronk. J.T., 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie van Leeuwenhoek. 90(4): 391-418.
You, K.M., Rosenfield, C.L., Knipple, D.C., 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Applied and Environmental Microbiology. 69(3): 1499-1503.
Wallace-Salinas, V., Gorwa-Grauslund, M.F., 2013. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnology for Biofuels. 6: 151-151.