Tong Thi Anh Ngoc * , Nguyen Le Thanh cao , Nguyen Le Thanh Bach , Nguyen Cam Tu and Phan Nguyen Trang

* Corresponding author (ttangoc@ctu.edu.vn)

Main Article Content

Abstract

This study aimed to evaluate the effectiveness of different conditions (i.e., different salt concentrations from 3.5 to 4.5%, and initial Lactobacillus plantarum populations from 104 to 106 CFU/mL) on the quality of fermentative grey oyster mushrooms at 15oC during 25 days. The quality parameters i.e., total color difference, texture, total soluble solid, pH, lactic acid bacteria counts, total polyphenol content (TPC) and the free radical scavenging activity were measured during the fermentation. The results illustrated that the fermentation of grey oyster mushrooms would be in NaCl (3.5%) and initial Lactobacillus plantarum (104 CFU/mL). The obtained data showed that although no significant difference was observed among different salt concentrations and inoculum starter culture on the quality of fermented mushrooms, the fermentation conditions enhanced the rising of TPC resulting in an increase in antioxidant activities of fermented oyster mushrooms. This study reveals that fermented grey oyster mushrooms can be used as a source of healthy plant-based foods by vegetarians to improve their nutrition diet.

Keywords: Grey oyster mushrooms, fermentation, Lactobacillus plantarum, quality, salt concentration

Article Details

References

Ahmed, M., Abdullah, N., & Nuruddin, M. M. (2016). Yield and nutritional composition of oyster mushrooms: An alternative nutritional source for rural people. Sains Malaysiana, 45(11), 1609-1615.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Chun, B. H., Kim, K. H., Jeong, S. E., & Jeon, C. O. (2020). The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiology, 86, 103329 https://doi.org/10.1016/j.fm.2019.103329

Deng, L.-Z., Mujumdar, A. S., Zhang, Q., Yang, X.H., Wang, J., Zheng, Z.A., Gao Z.J., Xiao, H.W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes-a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408-1432. https://doi.org/10.1080/10408398.2017.1409192

Di Cagno, R., Filannino, P., & Gobbetti, M. (2015). Vegetable and fruit fermentation by lactic acid bacteria. In F. Mozzi, R. R. Raya, G. M. Vignolo (Eds.), Biotechnology of lactic acid bacteria: Novel applications (pp. 216-230). Wiley Online Library. https://doi.org/10.1002/9781118868386.ch14

Di Cagno, R., Surico, R. F., Siragusa, S., De Angelis, M., Paradiso, A., Minervini, F., De Gara L., Gobbetti, M. (2008). Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. International Journal of Food Microbiology, 127(3), 220-228. https://doi.org/10.1016/j.ijfoodmicro.2008.07.010

Dueñas, M., Fernández, D., Hernández, T., Estrella, I., & Muñoz, R. (2005). Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. Journal of the Science of Food Agriculture, 85(2), 297-304. https://doi.org/10.1002/jsfa.1924

Dunkwal, V., Jood, S., & Singh, S. (2007). Physico-chemical properties and sensory evaluation of Pleurotus sajor caju powder as influenced by pre-treatments and drying methods. British Food Journal, 109(9), 749-759. doi: https://doi.org/10.1108/00070700710780715

Fessard, A., & Remize, F. (2017). Why are Weissella spp. not used as commercial starter cultures for food fermentation? Fermentation, 3(3), 38. https://doi.org/10.3390/fermentation3030038

Filannino, P., Azzi, L., Cavoski, I., Vincentini, O., Rizzello, C. G., Gobbetti, M., & Di Cagno, R. (2013). Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology, 163(2-3), 184-192. https://doi.org/10.1016/j.ijfoodmicro.2013.03.002

Fritsch, C., Jänsch, A., Ehrmann, M. A., Toelstede, S., & Vogel, R. F. (2017). Characterization of cinnamoyl esterases from different Lactobacilli and Bifidobacteria. Current Microbiology, 74(2), 247-256. https://doi.org/10.1007/s00284-016-1182-x

Gao, Y., Li, D., & Liu, X. (2014). Bacteriocin-producing Lactobacillus sakei C2 as starter culture in fermented sausages. Food Control, 35(1), 1-6. https://doi.org/10.1016/j.foodcont.2013.06.055

Giacon, T. G., e Cunha, G. C. d. G., Eliodório, K. P., de Souza Oliveira, R. P., & Basso, T. O. (2021). Homo-and heterofermentative lactobacilli are differently affected by lignocellulosic inhibitory compounds. bioRxiv. https://doi.org/10.1101/2021.01.18.427060

Hur, S. J., Lee, S. Y., Kim, Y.C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112

Huynh, N. T., Smagghe, G., Gonzales, G. B., Van Camp, J., & Raes, K. (2014). Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. Journal of Agricultural and Food Chemistry, 62(30), 7468-7476. https://doi.org/10.1021/jf502543c

Jabłońska-Ryś, E., Sławińska, A., Skrzypczak, K., & Goral, K. (2022). Dynamics of changes in pH and the contents of free sugars, organic acids and LAB in button mushrooms during controlled lactic fermentation. Foods, 11(11), 1553. https://doi.org/10.3390/foods11111553

Jiménez, N., Esteban-Torres, M., Mancheño, J. M., de Las Rivas, B., & Muñoz, R. (2014). Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Applied and Environmental Microbiology, 80(10), 2991-2997. https://doi.org/10.1128/AEM.00324-14

Jung, S., Ghoul, M., & de Lamballerie-Anton, M. (2003). Influence of high pressure on the color and microbial quality of beef meat. LWT-Food Science and Technology, 36(6), 625-631. https://doi.org/10.1016/S0023-6438(03)00082-3

Liu, Y., Xie, X.-x., Ibrahim, S. A., Khaskheli, S. G., Yang, H., Wang, Y.-f., & Huang, W. (2016). Characterization of Lactobacillus pentosus as a starter culture for the fermentation of edible oyster mushrooms (Pleurotus spp.). LWT-Food Science and Technology, 68, 21-26. doi: https://doi.org/10.1016/j.lwt.2015.12.008

Marazza, J. A., Nazareno, M. A., de Giori, G. S., & Garro, M. S. J. J. O. F. F. (2012). Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. Journal of Functional Foods, 4(3), 594-601. https://doi.org/10.1016/j.jff.2012.03.005

Montet, D., Ray, R. C., & Zakhia-Rozis, N. (2014). Lactic acid fermentation of vegetables and fruits. Microorganisms and fermentation of traditional foods, 108-140.

Mishra, N., & Mani, A. (2019). Post-harvest management, processing and value addition of mushroom: Satish serial publishing house.

Pyo, Y.H., Lee, T.C., & Lee, Y.C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Research International, 38(5), 551-559. https://doi.org/10.1016/j.foodres.2004.11.008

Manzi, P., & Pizzoferrato, L. (2000). Beta-glucans in edible mushrooms. Food Chemistry, 68(3), 315–318. https://doi.org/10.1016/S0308-8146(99)00197-1

Rashidi, A. M., & Yang, T. A. (2016). Nutritional and antioxidant values of oyster mushroom (P. sajor-caju) cultivated on rubber sawdust. International Journal on Advanced Science, Engineering and Information Technology, 6(2), 161-164.

Rodríguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C., Mancheño, M. J., Muñoz, R. (2009). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132(2-3), 79-90. https://doi.org/10.1016/j.ijfoodmicro.2009.03.025

Rodríguez, H., Landete, J. M., de las Rivas, B., & Muñoz, R. (2008). Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chemistry, 107(4), 1393-1398. https://doi.org/10.1016/j.foodchem.2007.09.067

Saidatul, S. W. K. W., Noriham, A., Zainal, S., Khairusy, S. Z., & Nurain, A. (2013). Impact of non-thermal processing on antioxidant activity, phenolic content, ascorbic acid content and color of winter melon puree. International Food Research Journal, 20(2), 633-638.

Steinkraus, K. H. (2002). Fermentations in world food processing. Comprehensive Reviews in Food Science and Food Safety, 1(1), 23-32.

Swain, M. R., Anandharaj, M., Ray, R. C., & Rani, R. P. (2014). Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnology Research International,1-19. http://dx.doi.org/10.1155/2014/250424

Van Garde, S. J., & Woodburn, M. J. (1994). Food preservation and safety: Principles and practice (1st ed.). USA: Iowa State University.

Wan Rosli, W. I., Solihah, M. A., Aishah, M., Nik Fakurudin, N. A., & Mohsin, S. S. J. (2011). Colour, textural properties, cooking characteristics and fibre content of chicken patty added with oyster mushroom (Pleurotus sajor-caju). International Food Research Journal, 18(2), 621–627.

Xiong, T., Li, J., Liang, F., Wang, Y., Guan, Q., & Xie, M. (2016). Effects of salt concentration on Chinese sauerkraut fermentation. LWT-Food Science and Technology, 69, 169-174. https://doi.org/10.1016/j.lwt.2015.12.057

Zheng, H. G., Chen, J. C., & Ahmad, I. (2018). Preservation of King Oyster Mushroom by the use of different fermentation processes. Journal of Food Processing and Preservation, 42(1), e13396. https://doi.org/10.1111/jfpp.13396

Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69(1), SNQ44-SNQ49. https://doi.org/10.1111/j.1365-2621.2004.tb17885.x