Do Thi Thanh Huong * , Nguyen Thi Kim Ha , Nguyen Tinh Em , Tang Minh Ky , Yasuaki Takagi and Nguyen Thanh Phuong

* Correspondence: Do Thi Thanh Huong (email:

Main Article Content


The effects of temperature on growth performance, survival rate, digestive enzymatic activities, and physiological responses of striped snakehead (Channa striata) at fry stage were evaluated. The study consisted of two trials including (1) determination of temperature threshold and (2) effects of different temperatures (24°C, 27°C (control), 30°C, 33°C and 36°C) on growth performance, survival rate, digestive enzyme activities and physiological parameters of striped snakehead fry stage for 90 days. The growth experiment was conducted in 500-L tank (250-L water) with triplicates. The stocking density was 300 individuals per tank. Striped snakehead at fry stage showed a high tolerance to temperature ranging from 10 to 40ºC. After 90 days, fish reared in 30°C performed the greatest weight and survival rate (13.1±3.12 g/fish and 15.5±4.63%, respectively). The number of red blood cells and hemoglobin concentrations increased with the increase in temperature. It was discovered that different temperatures (from 27 to 36°C) did not significantly influence the number of white blood cells, osmolality, and ion concentration of fish. Glucose and cortisol concentrations increased with temperature rises and peaked in fish reared at 36°C, while temperatures of 30oC and 33oC showed higher digestive enzyme activities. It proves that 30°C is the optimal level for striped snakehead fry rearing.

Keywords: Channa striata, digestive enzyme, growth, physiological responses, temperature

Article Details


Ahmad, T., Singh, S. P., Khangembam, B. K., Sharma, J. G. & Chakrabarti, R. (2014). Food consumption and digestive enzyme activity of Clarias batrachus exposed to various temperatures. Aquaculture Nutrition, 20(3), 265-272.

Andrews, J. W. & Stickney, R. R. (1972). Interactions of feeding rates and environmental temperature on growth, food conversion, and body composition of channel catfish. Transactions of the American Fisheries Society101(1), 94-99.

Bernfeld, P. (1951). Enzymes of starch degradation and synthesis. In. F. F. Nord (Eds.), Advances in enzymology and related areas of molecular biology (pp. 379-428). Interscience Publishers, Inc. Doi: 10.1002/9780470122570.ch7

Bhikajee, M., & Gobin, P. (1998). Effect of temperature on the feeding rate and growth of a red tilapia hybrid. Tilapia Aquaculture. Proceedings from the 4th International Symposium on Tilapia Aquaculture, 1, 131–140.

Biro, P. A., Beckmann, C., & Stamps, J. A. (2010). Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proceedings of the Royal Society B: Biological Sciences277(1678), 71-77.

Bœuf, G., & Payan, P. (2001). How should salinity influence fish growth?. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology130(4), 411-423.

Bœuf, G., Boujard, D. & Person-le Ruyet, J. (1999). Control of the somatic growth in turbot. Journal of Fish Biology, 55, 128147.

Boyd, C. E., & Tucker, C. S. (1998). Pond aquaculture water quality management. Springer Science & Business Media, LLC.

Boyd, C. E. (1990). Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn university. Alabama.

Brett, J. R. (1979). Environmental factors and growth. In: Hoar, W. S., Randall, D. J., Brett, J. R. Eds. Fish Physiology, 8, 599-675.

Brett, J. R. & Groves, T. D. D. (1979). Physiological energetics. Fish physiology, 8(6), 280-352.

Britz, P. J. & Hecht, T. (1987). Temperature preferences and optimum temperature for growth of African sharptooth catfish (Clarias gariepinus) larvae and postlarvae. Aquaculture63(1-4), 205-214.

Buentello, J. A., Gatlin III, D. M. & Neill, W. H. (2000). Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture182(3-4), 339-352.

Carriquiriborde, P., Díaz, J., López, G. C., Ronco, A. E. & Somoza, G. M. (2009). Effects of
cypermethrin chronic exposure and water temperature on survival, growth, sex
differentiation, and gonadal developmental stages of Odontesthes bonariensis (Teleostei). Chemosphere, 76, 374-380.

Carvalho, C. S. & Fernandes, M. N. (2006). Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture251(1), 109-117.

Chinh, V.T. (2014). Effect of temperature on digestive enzyme activity, ingestion and growth performance of striped snakehead (Channa striata Bloch, 1793) (master’s thesis). Can Tho University, Can Tho city, Vietnam (in Vietnamese).

Cossins, A. R. & Bowler, K. (1987). Temperature Biology of Animals (1st ed.). Chapman & Hall, London. Doi: 10.1007/978-94-009-3127-5.

Cox, D. K. & Coutant, C. C. (1981). Growth dynamics of juvenile striped bass as functions of temperature and ration. Transactions of the American Fisheries Society110(2), 226-238.

Cuenco, M. L., Stickney, R. R. & Grant, W. E. (1985). Fish bioenergetics and growth in aquaculture ponds: II. Effects of interactions among, size, temperature, dissolved oxygen, unionized ammonia and food on growth of individual fish. Ecological modeling27(3-4), 191-206.

Debnath, D., Pal, A. K., Sahu, N. P., Baruah, K., Yengkokpam, S., D., T. & Manush, S. M. (2006). Thermal tolerance and metabolic activity of yellowtail catfish Pangasius pangasius (Hamilton) advanced fingerlings with emphasis on their culture potential. Aquaculture258(1-4), 606-610.

Dehadrai, P. V., Yusuf, K. M. & Das, R. K. (1985). Package of practices for increasing production of air breathing fishes. Aquaculture extension manual, 3, 1-14.

Dutta, H. (1994). Growth in Fishes. Gerontology, 40(2-4), 97–112.

Elliott, J. M. (1982). The effects of temperature and ration size on the growth and energetics of salmonids in captivity. Comparative Biochemistry and Physiology, 73B, 81–91.

Gam, L. T. H. (2018). Effects of nitrite, temperature and hypercapnia on physiological processes and growth in clown knifefish (Chitala ornata, Gray 1831) (Doctoral dissertation). Can Tho University.

Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S., ... & Armstrong, B. (2017). Projections of temperature-related excess mortality under climate change scenarios. The Lancet Planetary Health1(9), e360-e367.

Goolish, E. M. & Adelman, I. R. (1984). Effects of ration size and temperature on the growth of juvenile common carp (Cyprinus carpio L.). Aquaculture36(1-2), 27-35.

Ha, N .T. K., Bieu, N. T. X., Phuong, N. T., & Huong, D. T. T. (2017). Effect of CO2 on acid-base regulation and growth performance of basa catfish (Pangasius bocourti). Can Tho University Journal of Science54(2), 18-26.

Hao, V. Q. (2015). The effects of temperature on physiological parameters and growth rate  of giant gourami (Osphronemus goramy) juveniles (master’s thesis). Can Tho University (in Vietnamese).

Heath, A. G. (1995). Water Pollution and Fish Physiology. Second edition. CRC Press, Inc.

Houston, A. H., Reavds, R. S., Madden, J. A. & DeWilde, M. A., (1968). Environmental temperature and the body fluid system of the fresh-water teleost-I. Ionic regulation in thermally acclimated rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology, 25, 563-581.

Hrubec, T. C., Cardinale, J. L. & Smith, S. A. (2000). Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Veterinary clinical pathology29(1), 7-12.

Hugget, A. S. G. & Nixon, D. A. (1957). Use of glucose oxidase, peroxidase and o-dianisidine in determination of blood and urinary glucose. The Lancet, 270 (6991), 368-370.

Huong, D. T. T., Ky, T. M., Ha, N. T. K., Em, N. T., Takagi, Y. & Phuong, N. T. (2020). Effects of salinity on physiological parameters, digestive enzyme activities and growth of snakehead fish (Channa striata). Can Tho University Journal of Science. Special issue on Aquaculture and Fisheries, 56(1), 11-19 (in Vietnamese).

Huong. D.T.T. & Tu, N.V. (2010). Introduction to the physiology and fish and crustacean. Agricultural Publishing House. Ho Chi Minh City. 152 pages (in Vietnamese).

IPCC. (2007). Summary for policymakers. Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-13). Cambridge University Press Cambridge, UK.

IPCC, (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. 151 pages.

IPCC. (2018). Global warming of 1,5°C. Summary for Policymakers. 26 pages.

Kiilerich, P. & Prunet, P. (2011). Hormonal control of metabolism and ionic regulation  Corticosteroids. In: Farrell A.P. (Eds). Encyclopedia of Fish Physiology. Academic Press. San Diego. 1474–1482.

Lee, P. G. & Ng, P. K. (1994). The systematics and ecology of snakeheads (Pisces: Channidae) in Peninsular Malaysia and Singapore. In Ecology and Conservation of Southeast Asian Marine and Freshwater Environments including Wetlands, 59-74.

Long, D. N., Lan, L. M. & Tuan, N. A. (2017). Biology and culture technique of freshwater species in Mekong Delta. Labor publishing house. Ho Chi Minh City (in Vietnamese).

Mackay, W. C. (1974). Effect of temperature on osmotic and ionic regulation in goldfish, Carassius auratus LJournal of comparative physiology88(1), 1-19.

Martinez-Alvarez, R. M., Hidalgo, M. C., Domezain, A., Morales, A. E., García-Gallego, M. & Sanz, A. (2002). Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of experimental biology205(23), 3699-3706.

Natt, M. P. & Herrick, C. A. (1952). A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poultry Science, 31, 735-738.

Nhu, T.T.B. (2010). Effects of Malachitegreen and temperature on physiological parameters and  Cholinesterase of striped catfish (Pangasianodon hypophthalmus) (master’s thesis). Can Tho University, Can Tho city, Vietnam (in Vietnamese).

Hawk, B.P. (1965). Blood analysis. Estimation of Hb by cyanomethemoglobin method , In B. L. Oser (Eds.), Hawk’s Physiological Chemistry (pp. 1096). The Blackston Division McGraw-Hill Book Company.

Pacheco, M., & Santos, M. A. (2001). Biotransformation, endocrine, and genetic responses of Anguilla anguilla L. to petroleum distillate products and environmentally contaminated waters. Ecotoxicology and Environmental Safety, 49(1), 64-75.

Peters, D. S. & Boyd, M. T. (1972). The effect of temperature, salinity, and availability of food on the feeding and growth of the hogchoker, Trinectes maculatus (Bloch and Schneider). Journal of Experimental Marine Biology and Ecology9(2), 201-207.

Peterson, M. S., Comyns, B. H., Rakocinski, C. F. & Fulling, G. L. (1999). Does salinity affect somatic growth in early juvenile Atlantic croaker, Micropogonias undulatus (L.)?. Journal of Experimental Marine Biology and Ecology238(2), 199-207.

Phuc, N. T .H. (2015). Effects of temperature and salinity on growth performance in cultured tra catfish (Pangasianodon hypophthalmus) in Vietnam (PhD dissertation). Queensland University of Technology Brisbane, Australia.

Phuc, N. T. H., Huong, D. T. T., Mather, P. B. & Hurwood, D. A. (2014). Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus)Fish physiology and biochemistry40(6), 1839-1848.

Prosser, C. L., Mackay, W. & Kato, K. (1970). Osmotic and ionic concentrations in some Alaskan fish and goldfish from different temperatures. Physiological Zoolozy, 43, 81-89.

Requena, A., Fernandez-Borras, J. & Planas, J. (1997). The effects of a temperature rise on oxygen consumption and energy budget in gilthead sea bream. Aquaculture International5(5), 415-426.

Sarma, K., Pal, A. K., Ayyappan, S., Das, T., Manush, S. M., Debnath, D. & Baruah, K. (2010). Acclimation of Anabas testudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish physiology and biochemistry36(1), 85-90.

Seggel, A. & De Young, C. (2016). Climate change implications for fisheries and aquaculture: summary of the findings of the Intergovernmental Panel on Climate Change Fifth Assessment Report. FAO Fisheries and Aquaculture Circular. C1122.

Snellgrove, D. L. & Alexander, L. G. (2011). Haematology and plasma chemistry of the red top ice blue mibuna cichlid (Metriaclima greshakei). British Journal of Nutrition, 106, 154-S157.

Talwar, P. K., & Jhingran, A. G. (1991). Inland fishes of India and adjacent countries, volume two. Oxford IBH Publishing Co Pvt Ltd, New Delhi-Calcutta. 543-1158.

Taylor, E. W., Egginton, S., Taylor, S. E. & Butler, P. J. (1997). Factors which may limit swimming performance at different temperatures. In Seminar series-society for experimental biology, 61, 105-134.

 Thinh, P. V. (2019). Effects of CO2, temperature and nitrite on acid-base regulation and haematological parameters in Swamp eels (Monopterus albus Zuiew, 1793) (Doctoral dissertation). Can Tho University, Can Tho city, Vietnam.

Thinh, P. V., Phuong, N. T., Huong, D. T. T & Phuc, N. T. H. (2013). The effects of temperature on physiological parameters and growth rate of catfish (Pangasianodon hypophthalmus). Can Tho University Journal of Science. Special issue on Aquaculture and Fisheries, (1), 292-301 (in Vietnamese).

Tipsmark, C. K., Madsen, S. S. & Borski, R. J. (2004). Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). Journal of Experimental Zoology Part A: Comparative Experimental Biology, 301, 979–991.

Tseng, H. C., Grendell, J. H. & Rothman, S. S. (1982). Food, duodenal extracts, and enzyme secretion by the pancreas. American Journal of Physiology, 243, 304–312.

Umminger, B. L. (1969). Physiological studies on supercooled killifish (Fundulus heteroclitus) I. Serum inorganic constituents in relation to osmotic and ionic regulation at subzero temperatures. Journal of Experimental Zoology, 172(3), 283-302.

Worthington T. M. (1982). Enzymes and Related Biochemicals. Biochemical Products Division, Worthington Diagnostic System, Freehold, NJ, USA.

Most read articles by the same author(s)

1 2 > >>