Characterizations of sulfur oxidizing bacteria from extensive shrimp ponds
Main Article Content
Abstract
The aim of this study is to characterize the sulfur oxidizing bacteria (SOB) isolates from the sediments of extensive shrimp ponds for recommending the use of this group for water quality management in aquaculture. Sediment samples were collected from 12 extensive shrimp ponds located in Tra Vinh, Soc Trang, Bac Lieu, and Ca Mau provinces. To screen the potential sulfur oxidizing bacteria, medium was amended with sodium thiosulfate, and the sulfate ion production ability and sulfur oxidase enzyme activity of the isolates were measured spectrophotometrically. Results showed that 30 isolates grew on the thiosulfate agar medium. Among these, only five isolates reduced the pH of the growth medium and showed high sulfur oxidase activity and production of sulfate ion when isolates were inoculated with thiosulfate as a substrate. Physiological and biochemical tests indicated that five selected isolates were Gram negative, short rod, non-motile, non-spore forming, negative for oxidase reaction, and positive for catalase reaction. The isolates SOBTB1.1 and SOBTB6.2 showed the significantly higher sulfur oxidase activity and production of sulfate ion compared to other isolates. SOBTB6.2 isolate produced sulfate ion and exhibited higher sulfur oxidase activity at pH4-5, followed by pH6-7. It is, therefore, suggested that the SOBTB 1.1 and SOBTB6.2 could be promising sulfur oxidizers for further research and uses in aquaculture.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abraham, T. J., Ghosh, S., Nagesh, T. S., & Sasmal, D. (2004). Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of West Bengal, India. Aquaculture, 239, 275-288. https://doi.org/10.1016/j.aquaculture.2004.06.023
Abraham, T. J. S., Ghosh, S., Nagesh, T. S., & Sasmal, D. (2015). Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products. Journal of Coastal Life Medicine, 3, 466-470. https://doi.org/10.12980/jclm.3.2015jclm-2014-0076
APHA, WEF, & WWA (2017). Standard methods for the examination of water and wastewater, 23rd edition. American Public Health Association. Washington DC 20005.
Aroca, G., Urrutia, H., Oyarzun, P., Arancibia, A., & Guerrero, K. (2007). Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electronic Journal of Biotechnology, 10(4), 514-520. https://doi.org/10.2225/vol10-issue4-fulltext-6
Barbosa , L., Atkins, S. D., Barbosa, V. P., Burgess, J. E., & Stuetz, R. M. (2006). Characterization of Thiobacillus thioparus isolated from an activated sludge bioreactor used for hydrogen sulfide treatment. Journal of Applied Microbiology, 101, 1269-1281. https://doi.org/10.1111/j.1365-2672.2006.03032.x
Boyd, C. E. (2015). Water quality: an introduction. Springer Publisher. https://doi.org/10.1007/978-3-030-23335-8
Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (2005). Bergey’s Manual of Systematic Bacteriology 2nd edition, volume 2: The Proteobacteria. Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer Publisher, New York.
Brennan, D., Clayton, H., & Be, T. T. (2000). Economic characteristics of extensive shrimp farms in the Mekong Delta. Aquaculture Economics and Management, 4(3-4), 127-139. https://doi.org/10.1080/13657300009380265
Cheng, A. C., Shiu, Y. L., Chen, B. J, Huynh, T. G., & Liu, C. H. (2016). Isolation and identification of pathogenic bacterium Aeromonas veronii from ornamental shrimp Caridina cf. babaulti. Journal of Fishery Society of Taiwan, 43, 273-283. https://doi.org/10.29822/JFST.201612_43(4).0005
Chien, Y. H. (1992). Water quality requirements and management for marine shrimp culture. In J. Wyban, (Ed.). Proceedings of the special session on shrimp farming (pp. 144-156). World Aquaculture Society.
Devaraja, T. N., Yusoff, F. M., & Shariff, M. (2002). Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products. Aquaculture, 206, 245-256. https://doi.org/10.1016/S0044-8486(01)00721-9
Food and Agriculture Organization [FAO]. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. https://doi.org/10.4060/ca9229en
Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A., & Fischer, J. (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? (Mini review). Applied and Environmental Microbiology, 67, 2873-2882. https://doi.org/ 10.1128/aem.67.7.2873-2882.2001
Fry, J. C. (1987). Functional roles of the major groups of bacteria associated with detritus. In D. J. W. Moriarty & R. S. V. Pullin (Eds.), Detritus and Microbial Ecology in Aquaculture (pp. 83-122). ICLARM Conference Proceedings, Manila, Philippines.
Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
Guarner, F., & Schaafsma, G. J. (1998). Probiotics. International Journal of Food Microbiology. 39, 237-238. https://doi.org/10.1016/s0168-1605(97)00136-0
Holmes, D. S., & Bonnefoy, V. (2007). Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In D. E. Rawlings & D. B. Johnson (eds), Biomining. Springer. https://doi.org/10.1007/978-3-540-34911-2_14
Hucker, G. J., & Conn, H. J. (1923). Methods of Gram staining. New York State Agricultural Experiment Station.
Jaffer, Y. D., Kumar, H. S, Vinothkumar, R., Irfan, A. B., Ishfaq, N. M., Ganie, P. A., Bhat, R. A. H., & Vennila, A. (2019). Isolation and characterization of heterotrophic nitrification–aerobic denitrification and sulfur-oxidizing bacterium Paracoccus saliphilus strain SPUM from coastal shrimp ponds. Aquaculture International, 27, 1513-1524. https://doi.org/10.1007/s10499-019-00407-0
Jahangiri, L., & Esteban, M. A. (2018). Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes, 3(3), 33. https://doi.org/10.3390/fishes3030033
Kantachote, D., Charernjiratrakul, W., Noparatnaraporn, N., & Oda, K. (2008). Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production. Electronic Journal of Biotechnology, 11(2), 107-118. https://doi.org/ 10.2225/vol11-issue2-fulltext-13
Kelly, D. P., Wood, A. P., & Stackebrandt, E. (2005). Genus II Thiobacillus, Beijerinck 1904. In D. J. Brenner, N. R. Krieg, J. T. Staley, & G. M. Garrity (Eds.), Bergey’s Manual of Systematic Bacteriology (Part C) (pp. 764-769). Springer.
Krishnani, K. K., Gopikrishna, G., Pillai, S. M., & Gupta, B. P. (2010). Abundance of sulphur-oxidizing bacteria in coastal aquaculture using soxB gene analyses. Aquaculture Research, 41, 1290-1301. https://doi.org/10.1111/j.1365-2109.2009.02415.x
Kumar, N. R., Archana, K. K., Basha, K. A., Muthulakshmi, T., Joseph, T. C., & Prasad, M. M (2018). Isolation and identification of sulphur oxidizing bacteria from freshwater fish farm soil. Fishery Technology, 55, 270-275. https://doi.org/10.22438/jeb/40/3/MRN-914
Li, Q., Wang, C., Li, B., Sun, C., Deng, F., Song, C., & Wang, S. (2012). Isolation of Thiobacillus spp. and its application in the removal of heavy metals from activated sludge. African Journal of Biotechnology, 11(97), 16336-16341. https://doi.org/10.5897/AJB12.607
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: Growth promoting factors produced by microorganisms. Science, 147(3659), 747-748. https://doi.org/10.1126/science.147.3659.747
Mayer, E., Santos, G. A., & Encarnaçao, P. (2020, July 28). Do probiotics work in aquaculture? https://www.aquaculturealliance.org/advocate/do-probiotics-work-in-aquaculture/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA
Moriarty, D. J. W. (1997). The role of microorganisms in aquaculture ponds. Aquaculture, 151, 333-349. https://doi.org/10.1016/S0044-8486(96)01487-1
Moriarty, D. J. W. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture, 164(1-4), 351-358. https://doi.org/10.1016/S0044-8486(98)00199-9
Nadella, R. K., Vaiyapuri, M., Kusunur, A. B., Joseph, T. C., Velayudhan, L. K., & Mothadaka, M. P. (2019). Isolation and characterization of sulphur oxidizing bacteria (Halothiobacillus sp.) from aquaculture farm soil. Journal of Environmental Biology, 40(3), 363-369. https://doi.org/10.22438/jeb/40/3/MRN-914
Oddsson, G. V. (2020). A definition of aquaculture intensity based on production functions-The aquaculture production intensity scale (APIS). Water, 12(3), 765. https://doi.org/10.3390/w12030765
Rao, S., & Karunasagar, I. (2000). Incidence of bacteria involved in nitrogen and sulphur cycles in tropical shrimp culture ponds. Aquaculture International, 8(5), 463-472. https://doi.org/10.1023/A:1009250004999
Ravichandra, P., Mugeraya, G., Rao, A. G., Ramakrishna, M., & Jetty, A. (2007). Isolation of Thiobacillus sp from aerobic sludge of distillery and dairy effluent treatment plants and its sulfide oxidation activity at different concentrations. Journal of Environmental Biology, 28(4), 819-823.
Rawat, R., & Rawat, S. (2015). Colorless sulfur oxidizing bacteria from diverse habitats. Advances in Applied Science Research, 6(4), 230-235.
Reiner, K. (2018, July 22). Catalase Test Protocol. https://asm.org/Protocols/Catalase-Test-Protocol
Robertson, L. A., & Kuenen, J. G. (2006). The Genus Thiobacillus. In M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt (Eds), The Prokaryotes. Springer. https://doi.org/10.1007/0-387-30745-1_37
Shields, P., & Cathcart, L. (2018, July 22). Oxidase test protocol. https://asm.org/getattachment/00ce8639-8e76-4acb-8591-0f7b22a347c6/oxidase-test-protocol-3229.pdf
Somsiri, T., Oanh, D. T. H., Chinabut, S., Phuong, N. T., Shariff, M., Yusoff, F. M., & Teale, A. (2006). A simple device for sampling pond sediment. Aquaculture, 258(1-4), 650-654. https://doi.org/10.1016/j.aquaculture.2005.06.036
Ullah, I., Jilani, G., Haq, M. I., & Khan, A. (2013). Enhancing bioavailable phosphorous in soil through sulphur oxidation by Thiobacilli. British Microbiology Research Journal, 3(3), 378-392. https://doi.org/10.9734/BMRJ/2013/4063
Vietnam Association of Seafood Exporters and Producers [VASEP] (2020). Review on Vietnam Aquaculture. Retrieved August 12, 2020, from http://vasep.com.vn/1192/OneContent/tong-quan-nganh.htm (in Vietnamese).
Vidyalakshmi, R., Paranthaman, R., & Bhakyaraj, R. (2009). Sulphur oxidizing bacteria and pulse nutrition - A review. World Journal of Agricultural Sciences, 5(3), 270-278.
Zhang S., Yan, L., Xing, W., Chen, P., Zhang, Y., & Wang, W. (2018). Acidithiobacillus ferrooxidans and its potential application (review). Extremophiles, 22, 563-579. https://doi.org/10.1007/s00792-018-1024-9