Le Tran Thanh Liem , Pham Ngoc Nhan * and Nguyen Thi Kim Phuoc

* Corresponding author (pnnhan@outlook.com)

Main Article Content

Abstract

Agriculture activities require energy for operation and emit greenhouse gases (GHGs) into the atmosphere. However, agriculture provides essential nutrients with carbon sources through its main and by-products. This study used the life cycle assessment methodology to evaluate the carbon balance in agricultural systems of paddy rice (PR), corn, mung bean (MB), and black sesame (BS) in the summer-autumn growing season in the Vietnamese Mekong Delta. The results showed that PR and upland crops produced a net carbon source of 1,280.9–18,915 kg-C ha–1. Corn cultivation achieved the best value in carbon index analyses. To have one calorie from grain, selected crops must trade off 115.19–501.81 mg-CO2e. This study concluded that four selected crop cultivations achieved carbon analysis benefits. However, corn is a suitable recommendation for adapting to the agricultural conversion from PR farming to better upland crop cultivation.

Keywords: Black sesame, corn, greenhouse gases emission, mungbean, paddy rice

Article Details

References

Ali, S., & Jan, A. (2014). Sowing dates and nitrogen levels effect on yield attributes of sesame cultivars. Sarhad Journal of Agriculture, 30(2), 203–209.

Ateş, F., Pütün, A. E., & Pütün, E. (2006). Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts. Fuel, 85(12–13), 1851–1859. https://doi.org/10.1016/j.fuel.2006.01.015

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046

Dang, K. K., Doan, M. T., Le, T. H. L., Nguyen, T. T. N., Pham, D. T., Do, H. T., Ngo, S. D., Vu, T. B. N., & Nguyen, P. A. (2021). Assessing the performance of climate smart rice production systems in the upper part of the Vietnamese Mekong River Delta. Asian Journal of Agriculture and Development, 18(1), 15–29. https://doi.org/10.37801/ajad2021.18.1.2

Department of Agriculture and Rural Development of Hau Giang Province. (2020). Report on agriculture and rural development of Hau Giang province sector - The implementation in 2020 and mission direction in 2021.

Elleuch, M., Bedigian, D., & Zitoun, A. (2011). Sesame (Sesamum indicum L.) seeds in food, nutrition, and health. In Nuts and Seeds in Health and Disease Prevention (pp. 1029–1036). https://doi.org/10.1016/B978-0-12-375688-6.10122-7

Fu, P., Hu, S., Xiang, J., Sun, L., Su, S., & Wang, J. (2012). Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. Journal of Analytical and Applied Pyrolysis, 98, 177–183. https://doi.org/10.1016/j.jaap.2012.08.005

Halvorson, A. D., Snyder, C. S., Blaylock, A. D., & Del Grosso, S. J. (2014). Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agronomy Journal, 106(2), 715–722. https://doi.org/10.2134/agronj2013.0081

Hau Giang People Committee. (2022). Synthesis report: Hau Giang Province Planning for 2021 - 2030 and a Vision to 2050 (in Vietnamese).

Hau Giang Statistical Office. (2021). Report on the socio-economic situation of Hau Giang province in December, the fourth quarter and the year 2021. https://www.mpi.gov.vn/Pages/tinbai.aspx?idTin=53289&idcm=503

Hoa, N. T., Hasegawa, T., & Matsuoka, Y. (2014). Climate change mitigation strategies in agriculture, forestry and other land use sectors in Vietnam. Mitigation and Adaptation Strategies for Global Change, 19(1), 15–32. https://doi.org/10.1007/s11027-012-9424-0

Honorato-Salazar, J. A., & Sadhukhan, J. (2020). Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Bioproducts Processing, 119, 1–19. https://doi.org/10.1016/j.fbp.2019.10.005

Hung, N. P., Ampt, P., Rogers, G., & Ha, L. T. T. (2021). Preliminary N2O emissions of major vegetable cropping systems in peri-urban Hanoi, Vietnam. Vietnam Journal of Agricultural Sciences, 4(4), 1257–1269. https://doi.org/10.31817/vjas.2021.4.4.05

Ioannidou, O., Zabaniotou, A., Antonakou, E. V., Papazisi, K. M., Lappas, A. A., & Athanassiou, C. (2009). Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable and Sustainable Energy Reviews, 13(4), 750–762. https://doi.org/10.1016/j.rser.2008.01.004

IPCC. (2006). Guidelines for national greenhouse gas inventories (H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.). The Institute for Global Environmental Strategies, Japan.

IPCC. (2013). Climate Change 2013: The physical science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.). Cambridge University Press, Cambridge. https://doi.org/https://doi.org/10.1017/CBO9781107415324

Japan Environmental Management Association for Industry - JEMAI. (2014). The multiple interface life cycle assessment (MiLCA) software (2.3). Toray Industries incorporated and Japan Environmental Management Association for Industry (JEMAI), Tokyo, Japan.

Khairy, M., Amer, M., Ibrahim, M., Ookawara, S., Sekiguchi, H., & Elwardany, A. (2023). The influence of torrefaction on the biochar characteristics produced from sesame stalks and bean husk. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-03822-9

Le, T. P., & Ha, M. T. (2015). Environmental effects of three rice production models of Small farmer(s)-Large field, GAP, and Conventional farming in the Mekong Delta. Can Tho University Journal of Sciences, 38(2), 64–75.

Li, X., & Siddique, K. H. M. (2020). Future smart food: Harnessing the potential of neglected and underutilized species for zero hunger. Maternal and Child Nutrition, 16(S3), 1–22. https://doi.org/10.1111/mcn.13008

Liem, L. T. T., & Phuoc, N. T. K. (2023). Greenhouse gases emission from root vegetables cultivation in Viet Nam Mekong Delta: Cases study of sweet potato and taro in Kien Giang Province. In Research Works by Japan Young Alumni (2022) (pp. 83–91). VNU Publishing House.

Liem, L. T. T., Tashiro, Y., Tinh, P. V. T., & Sakai, K. (2022). Reduction in greenhouse gas emission from seedless lime cultivation using organic fertilizer in a province in Vietnam Mekong Delta Region. Sustainability, 14, 6102. https://doi.org/10.3390/su14106102

Linh, T. B., Guong, V. T., Tran, V. T. T., Van Khoa, L., Olk, D., & Cornelis, W. M. (2017). Effects of crop rotation on properties of a Vietnam clay soil under rice-based cropping systems in small-scale farmers’ fields. Soil Research, 55(2), 162–171. https://doi.org/10.1071/SR16123

Maguyon-Detras, M. C., Migo, M. V. P., Van Hung, N., & Gummert, M. (2020). Thermochemical conversion of rice straw. In M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 43–64). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-32373-8_4

Maraseni, T. N., Deo, R. C., Qu, J., Gentle, P., & Neupane, P. R. (2018). An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production. Journal of Cleaner Production, 172, 2288–2300. https://doi.org/10.1016/j.jclepro.2017.11.182

Ministry of Agriculture and Rural Development of Vietnam. (2014). Decision on “Approving the planning for plants structure conversion based on paddy rice land for the period of 2014–2020” (No. 3367/QĐ-BNN-TT).

Mohammadi, A., Cowie, A., Anh Mai, T. L., De La Rosa, R. A., Kristiansen, P., Brandão, M., & Joseph, S. (2016). Biochar use for climate-change mitigation in rice cropping systems. Journal of Cleaner Production, 116, 61–70. https://doi.org/10.1016/j.jclepro.2015.12.083

Namiki, M. (1995). The chemistry and physiological functions of sesame. Food Reviews International, 11(2), 281–329. https://doi.org/10.1007/BF02640380

Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: A paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 9(4), 417–436. https://doi.org/10.1111/j.1541-4337.2010.00117.x

Phong, L. T., & Loi, P. T. (2014). Environmental impact assessment of pummelo (Citrus maxima Merr.) and mango (Mangifera indica L.) production in the Mekong Delta. Can Tho University Journal of Science, 31, 39–50.

Purohit, P. (2009). Economic potential of biomass gasification projects under clean development mechanism in India. Journal of Cleaner Production, 17(2), 181–193. https://doi.org/10.1016/j.jclepro.2008.04.004

Sandin, S. (2005). Present and future methane emission from rice fields in Dong Ngac commune, Hanoi, Vietnam. In Earth Sciences Center, Göteborg University. Göteborg University.

Sellami, F., Jarboui, R., Hachicha, S., Medhioub, K., & Ammar, E. (2008). Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresource Technology, 99(5), 1177–1188. https://doi.org/10.1016/j.biortech.2007.02.018

Shuangning, X., Weiming, Y., & Li, B. (2005). Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor. Biomass and Bioenergy, 29(2), 135–141. https://doi.org/10.1016/j.biombioe.2005.03.002

Soni, P., Taewichit, C., & Salokhe, V. M. (2013). Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agricultural Systems, 116, 25–36. https://doi.org/10.1016/j.agsy.2012.12.006

Sriphirom, P., Chidthaisong, A., Yagi, K., Tripetchkul, S., & Towprayoon, S. (2020). Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers’ adoption. Soil Science and Plant Nutrition, 66(1), 235–246. https://doi.org/10.1080/00380768.2019.1706431

Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A., & Daigh, A. (2016). Effect of Enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Science Society of America Journal, 80(5), 1121–1134. https://doi.org/10.2136/sssaj2016.06.0179

The British Standards Institution - BSI. (2012). Assessment of life cycle greenhouse gas emissions from horticultural products: Supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050 (PAS 2050-1). BSI Standards Limited.

Toma, Y., Takechi, Y., Inoue, A., Nakaya, N., Hosoya, K., Yamashita, Y., Adachi, M., Kono, T., & Hideto, U. (2021). Early mid-season drainage can mitigate greenhouse gas emission from organic rice farming with green manure application. Soil Science and Plant Nutrition, 67(4), 482–492. https://doi.org/10.1080/00380768.2021.1927832

Truong, T. T. A., Fry, J., Van Hoang, P., & Ha, H. H. (2017). Comparative energy and economic analyses of conventional and System of Rice Intensification (SRI) methods of rice production in Thai Nguyen Province, Vietnam. Paddy and Water Environment, 15(4), 931–941. https://doi.org/10.1007/s10333-017-0603-1

United Nations. (2014). The road to dignity by 2030: ending poverty, transforming all lives and protecting the planet - Synthesis report of the Secretary-General on the post-2015 agenda. https://www.un.org/disabilities/documents/reports/SG_Synthesis_Report_Road_to_Dignity_by_2030.pdf

Vo, T. B. T., Wassmann, R., Tirol-Padre, A., Cao, V. P., MacDonald, B., Espaldon, M. V. O., & Sander, B. O. (2018). Methane emission from rice cultivation in different agro-ecological zones of the Mekong River Delta: seasonal patterns and emission factors for baseline water management. Soil Science and Plant Nutrition, 64(1), 47–58. https://doi.org/10.1080/00380768.2017.1413926

Wang, X., Yang, L., Steinberger, Y., Liu, Z., Liao, S., & Xie, G. (2013). Field crop residue estimate and availability for biofuel production in China. Renewable and Sustainable Energy Reviews, 27(2), 864–875. https://doi.org/10.1016/j.rser.2013.07.005

Wu, P., Chen, G., Liu, F., Cai, T., Zhang, P., & Jia, Z. (2021). How does deep-band fertilizer placement reduce N2O emissions and increase maize yields? Agriculture, Ecosystems and Environment, 322(June), 107672. https://doi.org/10.1016/j.agee.2021.107672

Yao, Z., Yan, G., Wang, R., Zheng, X., Liu, C., & Butterbach-Bahl, K. (2019). Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmospheric Environment, 212(February), 183–193. https://doi.org/10.1016/j.atmosenv.2019.05.056