Developments and antioxidant evaluation of Sesbania sesban-leaf-extract loaded carboxymethyl cellulose hydrogel as a potential skin cosmetic
Main Article Content
Abstract
Natural antioxidant products are receiving great attention as a safe alternative to chemically synthesized ones. For this, the phenolic compounds in the Sesbania sesban L. leaves possess potential antioxidant activities. Therefore, in this study, the Sesbania sesban L. leaf extract (SSE) was prepared and incorporated in the carboxymethyl cellulose (CMC) hydrogel as a natural antioxidant product. Firstly, the SSE was produced by the sonication-assisted extraction method, which demonstrated a total phenolic content of 61.44 ± 7.23 mg gallic acid equivalent/g dry powder weight, and a high antioxidant activity (IC50 = 15.381 ± 1.270 µg/mL). Then, the SSE was loaded into the CMC hydrogel and physicochemically evaluated in terms of physical observation, viscosity, gelation time, and drug release profiles. The hydrogel showed acceptable properties with a gradual release of polyphenol content over two stages for at least 180 min. Finally, utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, the antioxidant action of the SSE was well-maintained in the SSE loaded CMC hydrogel. In summary, the SSE loaded CMC hydrogel could be further investigated to become a potential cosmetic in the market.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Benhalima, T., Ferfera-Harrar, H., & Lerari, D. (2017). Optimization of carboxymethyl cellulose hydrogels beads generated by an anionic surfactant micelle templating for cationic dye uptake: Swelling, sorption and reusability studies. International Journal of Biological Macromolecules, 105, 1025–1042. https://doi.org/10.1016/J.IJBIOMAC.2017.07.135
Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
Cuong, H. Q., Bach, N. V., & Toan, P. D. (2022). Development and antioxidant activity investigation of Wedelia trilobata L. extract loaded silk fibroin microparticles. Can Tho University Journal of Science, 58(4), 26-34. https://doi.org/10.22144/ctu.jvn.2022.160 (in Vietnamese).
Fitriansyah, S. N., Fidrianny, I., & Ruslan, K. (2017). Correlation of total phenolic, flavonoid and carotenoid content of Sesbania sesban (L. Merr) Leaves Extract with DPPH Scavenging Activities. International Journal of Pharmacognosy and Phytochemical Research, 9(1), 89–94. https://doi.org/10.25258/ijpapr.v9i1.8046
Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476(2), 107–112. https://doi.org/10.1016/J.ABB.2008.01.028
Jurkiewicz, B. A., & Buettner, G. R. (1996). EPR detection of free radicals in UV-irradiated skin: Mouse versus human. Photochemistry and Photobiology, 64(6), 918–922. https://doi.org/10.1111/J.1751-1097.1996.TB01856.X
Kathiravan, S., & Kalava, S. (2021). A study on in vitro antioxidant activity of aqueous seed extract of Sesbania sesban (l) merr. Kongunadu Research Journal, 8(2), 69–74.
Liebel, F., Kaur, S., Ruvolo, E., Kollias, N., & Southall, M. D. (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. The Journal of Investigative Dermatology, 132(7), 1901–1907. https://doi.org/10.1038/JID.2011.476
Marrot, L. (2018). Pollution and sun exposure: A deleterious synergy. Mechanisms and opportunities for skin protection. Current Medicinal Chemistry, 25(40), 5469–5486. https://doi.org/10.2174/0929867324666170918123907
Masakil, H., Atsumi, T., & Sakurai, H. (1995). Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochemical and Biophysical Research Communications, 206(2), 474–479. https://doi.org/10.1006/BBRC.1995.1067
Pelen, S., Wullur, A., & Citraningtyas, G. (2016). Anti-acne gel formulation of cinnamon (Cinnamomum burmanii) bark essential oil and activity testing against Staphylococcus aureus [In Indonesian]. Pharmacon, 5(4), 159245. https://doi.org/10.35799/pha.5.2016.13984
Pham, D. T., Huynh, Q. C., Lieu, R., Nguyen, V. B., Tran, V. D., & Thuy, B. T. P. (2023). Controlled-release Wedelia trilobata L. flower extract loaded fibroin microparticles as potential anti-aging preparations for cosmetic trade commercialization. Clinical, Cosmetic and Investigational Dermatology, 16, 1109–1121. https://doi.org/10.2147/CCID.S405464
Pham, D. T., Nguyen, D. X. T., Lieu, R., Huynh, Q. C., Nguyen, N. Y., Quyen, T. T. B., & Tran, V. D. (2023). Silk nanoparticles for the protection and delivery of guava leaf (Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Drug Delivery, 30(1), 2168793. https://doi.org/10.1080/10717544.2023.2168793
Pham, D. T., Phewchan, P., Navesit, K., Chokamonsirikun, A., Khemwong, T., & Tiyaboonchai, W. (2021). Development of metronidazole-loaded in situ thermosensitive hydrogel for periodontitis treatment. Turkish Journal of Pharmaceutical Sciences, 18(4), 510–516. https://doi.org/10.4274/TJPS.GALENOS.2020.09623
Pham, D. T., Saelim, N., & Tiyaboonchai, W. (2018). Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: Physicochemical properties, crystallinity and structure. Journal of Materials Science, 53(20), 14087–14103. https://doi.org/10.1007/s10853-018-2635-3
Pham, D. T., Thao, N. T. P., Thuy, B. T. P., Tran, V. D., Nguyen, T. Q. C., & Nguyen, N. N. T. (2022). Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Drug Delivery, 29(1), 882–888. https://doi.org/10.1080/10717544.2022.2050848
Rajendraprasad, R., Kwatra, G., & Batra, N. (2021). Carboxymethyl cellulose versus hydroxypropyl methylcellulose tear substitutes for dry eye due to computer vision syndrome: Comparison of efficacy and safety. International Journal of Applied and Basic Medical Research, 11(1), 4. https://doi.org/10.4103/IJABMR.IJABMR_399_20
Rehman, K., & Zulfakar, M. H. (2014). Recent advances in gel technologies for topical and transdermal drug delivery. Drug Development and Industrial Pharmacy, 40(4), 433–440. https://doi.org/10.3109/03639045.2013.828219
Shekhar, T., & Anju, G. (2014). Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine, 1(4), 244–249.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
Huynh, D. T. M., Le, M.-N. T., Tran, V. D., & Pham, D. T. (2022). Antibacterial hydrogel containing Piper betle L. extract for acne treatment, an ex vivo investigation. Pharmaceutical Sciences Asia, 49(4), 381–389. https://doi.org/10.29090/psa.2022.04.22.061
Tien, N. Đ. X., Yen N. N., & Toan, P. D. (2023). Preparation and antioxidant evaluation of hydroxypropyl methylcellulose hydrogel containing metformin. CTU Journal of Science, 59(6), 34–43. https://doi.org/10.22144/ctujos.2023.214 (in Vietnamese).
Wang, H. M., Chen, C. Y., Chen, H. A., Huang, W. C., Lin, W. R., Chen, T. C., Lin, C. Y., Chien, H. J., Lu, P. L., Lin, C. M., & Chen, Y. H. (2010). Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii. Phytotherapy Research, 24(12), 1825–1830. https://doi.org/10.1002/PTR.3201
Zongo, E., Busuioc, A., Meda, R. N.-T., Botezatu, A. V., Mihaila, M. D., Mocanu, A.-M., Avramescu, S. M., Koama, B. K., Kam, S. E., Belem, H., Somda, F. L. S., Ouedraogo, C., Ouedraogo, G. A., & Dinica, R. M. (2023). Exploration of the antioxidant and anti-inflammatory potential of cassia sieberiana DC and Piliostigma thonningii (Schumach.) Milne-Redh, traditionally used in the treatment of Hepatitis in the Hauts-bassins region of Burkina Faso. Pharmaceuticals, 16(1), Article 1. https://doi.org/10.3390/ph16010133