Effect of CO2 on acid-base regulation and growth performance of basa catfish (Pangasius bocourti)
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Boutilier, R.G., Iwama, G.K., Heming, T.A. and Randall, D.J., 1985. The apparent pK of carbonic acid in rainbow trout blood plasma between 5 and 15 C. Respiration. Physiology. 61(2): 237-254.
Brauner, C.J., and Baker, D.W., 2009. Patterns of Acid–Base Regulation During Exposure to Hypercarbia in Fishes. In Glass, L.M and Wood, C.S (Eds.). Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects. Springer Berlin Heidelberg, pp. 43-63.
Brauner, C.J., Wang, T., Wang, Y., et al., 2004. Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis. Journal of Experimental Biology. 207(19): 3381-3390.
Cameron, J.N. and Iwama. G.K., 1987. Compensation of progressive hypercapnia in channel catfish and blue crabs. Journal of Experimental Biology. 133: 183-197.
Damsgaard, C., Gam, L.T.H., Tuong, D.D., et al., 2015. High capacity for extracellular acid–base regulation in the air-breathing fish Pangasianodon hypophthalmus. Journal of Experimental Biology. 218: 1290-1294.
Dimberg. K. and Høglund, L.B., 1987. Carbonic anhydrase activity in the blood and gills of rainbow trout during long-term hypercapnia in hard, bicarbonate-rich freshwater. Journal of Comparative Physiology B. 157(4): 405-412.
Evans, D.H., Piermarini, P.M. and Potts, W.T.W., 1999. Ionic transport in the fish gill epithelium. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 283(7): 641-652.
Fivelstad, S., 2013. Long-term carbon dioxide experiments with salmonids. Aquacultural Engineering. 53: 40-48.
Fivelstad, S., Haavik, H., Løvik, G. and Olsen, A.B., 1998. Sublethal effects and safe levels of carbon dioxide in seawater for Atlantic salmon postsmolts (Salmo salar L.): ion regulation and growth. Aquaculture. 160(3-4): 305-316.
Fivelstad, S., Kvamme, K., Handeland, S., Fivelstad, M., Olsen, A.B. and Hosfeld, C.D., 2015. Growth and physiological models for Atlantic salmon (Salmo salar L.) parr exposed to elevated carbon dioxide concentrations at high temperature. Aquaculture. 436: 90-94.
Flato, G., Marotzke, J., Abiodun, B., et al., 2013. Evaluation of climate models. In: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change. 5: 741-866.
Gilmour, K.M., 2001. The CO2/pH ventilatory drive in fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 130(2): 219-240.
Hafs, A.W., Mazik, P.M., Kenney, P.B. and Silverstein, J.T., 2012. Impact of carbon dioxide level, water velocity, strain, and feeding regimen on growth and fillet attributes of cultured rainbow trout (Oncorhynchus mykiss). Aquaculture. 350: 46-53.
Hartmann, D.L., Tank, A.M.K., Rusticucci, M., et al., 2013. Observations: atmosphere and surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Heisler, N., 1986. Buffering and transmembrane ion transfer processes. In N Heisler (Ed.). Acid-Base Regulation in Animals. Elsevier, pp 3-47.
Ishimatsu, A., Hayashi, M., Lee, K-S., Kikkawa, T. and Kita, J., 2005. Physiological effects on fishes in a high-CO2 world. Journal of Geophysical Research: Oceans. 110(C9).
Petochi, T., Di Marco, P., Priori, A., Finoia, M.G., Mercatali, I. and Marino, G., 2011. Coping strategy and stress response of European sea bass Dicentrarchus labrax to acute and chronic environmental hypercapnia under hyperoxic conditions. Aquaculture. 315(3-4): 312-320.
Regan, M.D., Turko, A.J., Heras, J., et al., 2016. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. Journal of Experimental Biology. 219: 109-118.
Stiller, K.T., Vanselow, K.H., Moran, D., et al., 2015. The effect of carbon dioxide on growth and metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture. 444: 143-150.
Ultsch, G.R., and Jackson, D.C., 1996. pH and temperature in ectothermic vertebrates, Bulletin of the Alabama Museum of Natural History. 18, 1-41.
Wurts, W.A., and Durborow, R.M., 1992. Interactions of pH, Carbon Dioxide, Alkalinity and Hardness in Fish Ponds. Southern Regional Aquaculture Center. 464: 1-4.