Bui Hoai Thanh , Tran Vu Bao Long , Le Van Nghia , Nguyen Tan Tan , Diep Anh Tho , Dan-Thuy Van-Pham , Nguyen Viet Nhan Hoa , Yoshiyuki Murata , Tran Thi Bich Quyen and Doan Van Hong Thien *

* Corresponding author (dvhthien@ctu.edu.vn)

Main Article Content

Abstract

This study evaluates the effectiveness of Trichoderma spp. in decomposing watermelon rind to produce bio-organic fertilizer. Response Surface Methodology (RSM) with Central Composite Design (CCD) was employed to optimize the cultivation conditions for Brassica juncea using the composted fertilizer. Results demonstrated that Trichoderma spp. significantly accelerated decomposition and improved fertilizer quality. Among the tested parameters, composting duration and fertilization rate significantly influenced plant growth, particularly leaf length and width, while microbial inoculant concentration had no notable effect. Microbial analysis confirmed that Coliform, E. coli, and Salmonella levels were below regulatory limits (ND 108/2017/ND-CP), with none detected in fertilizers produced with Trichoderma spp.. RSM optimization identified the optimal composting conditions as 18 days, 4 wt.% Trichoderma spp., and 50 v/v% fertilizer volume fraction. A high-accuracy mathematical model was developed to predict plant growth responses, effectively forecasting the impact of composting parameters on crop development. These findings highlight the potential of Trichoderma-based bio-organic fertilizers in sustainable agriculture.

Keywords: Bio-organic fertilizer, Brassica juncea, Response Surface Methodology (RSM), Trichoderma spp, Watermelon rind

Article Details

References

Babcock-Jackson, L., Konovalova, T., Krogman, J.P., Bird, R., & Díaz, L.L. (2023). Sustainable Fertilizers: Publication Landscape on Wastes as Nutrient Sources, Wastewater Treatment Processes for Nutrient Recovery, Biorefineries, and Green Ammonia Synthesis. Journal of Agricultural and Food Chemistry, 71(22), 8265-8296. https://doi.org/10.1021/acs.jafc.3c00454

Czekała, W., Dach, J., Janczak, D., Smurzyńska, A., Kwiatkowska, A., Kozłowski, K.J.J.o.W., & Development, L. (2016). Influence of maize straw content with sewage sludge on composting process. Journal of Water and Land Development, 30(1), 43-49.
https://doi.org/10.1515/jwld-2016-0020

Dung, N.T.P., Huong, L.H.L., & Phong, H.X. (2011). Isolation, selection of yeasts and determination of factors affecting watermelon wine fermentation. CTU Journal of Science, 18b, 137-145.

Feizy, J., Jahani, M., & Ahmadi, S. (2020). Antioxidant activity and mineral content of watermelon peel. Journal of Food and Bioprocess Engineering, 3(1), 35-40.
https://doi.org/10.22059/jfabe.2020.75811

Gagliardi, G.G., Borello, D., Cosentini, C., Barra Caracciolo, A., Aimola, G., Ancona, V., Ieropoulos, I.A., Garbini, G.L., Rolando, L., & Grenni, P. (2024). Microbial fuel cells with polychlorinated biphenyls contaminated soil as electrolyte: energy performance and decontamination potential in presence of compost. Journal of Power Sources, 613, 234878. https://doi.org/10.1016/j.jpowsour.2024.234878

Gathiru, M.M., Obuya, E., Noah, N.M., & Masika, E. (2024). Biosynthesized and chemically synthesized Ag/TiO2 nanocomposites: Effect of reaction parameters on synthesis using watermelon rind extract and comparative analysis. Heliyon, 10(15), e35284. https://doi.org/10.1016/j.heliyon.2024.e35284

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797

Karthiga, D., Chozhavendhan, S., Gandhiraj, V., & Aniskumar, M. (2022). The effects of Moringa oleifera leaf extract as an organic bio-stimulant for the growth of various plants: Review. Biocatalysis and Agricultural Biotechnology, 43, 102446. https://doi.org/10.1016/j.bcab.2022.102446

Kouniba, S., Benbiyi, A., Zourif, A., & El Guendouzi, M. (2024). Optimization use of watermelon rind in the coagulation-flocculation process by Box Behnken design for copper, zinc, and turbidity removal. Heliyon, 10(10), e30823. https://doi.org/10.1016/j.heliyon.2024.e30823

Ling Wen Xia, F., Supri, S., Djamaludin, H., Nurdiani, R., Leong Seng, L., Wee Yin, K., & Rovina, K. (2024). Turning waste into value: Extraction and effective valorization strategies of seafood by-products. Waste Management Bulletin, 2(3), 84-100. https://doi.org/10.1016/j.wmb.2024.06.008

Mahish, P.K., Verma, D.K., Ghritlahare, A., Arora, C., & Otero, P. (2024). Microbial bioconversion of food waste to bio-fertilizers. Sustainable Food Technology, 2(3), 689-708. https://doi.org/10.1039/d3fb00041a

Molina, T., Zhang, L., Nishimura, T., Johansen, S., Buenaventura, K., Wickstrom, C., & Hong, M.Y. (2023). Effects of blenderized watermelon with the rind on satiety, postprandial glucose, and bowel movement, with sensory evaluation. Human Nutrition & Metabolism, 34, 200223. https://doi.org/10.1016/j.hnm.2023.200223

Nguyen, D.T., & Tran, T.B. (2008). Research on making square watermelon for colourizing the national Vietnam’s Tet holiday. CTU Journal of Science, 9, 128-135.

Nguyen, T.T.H., Duong, M.V., & Nguyen, H.A. (2013). Investigating contamination risk of Salmonella, Shigella and E. coli on vegetables in vegetable growing areas and measures to improve. CTU Journal of Science, 25, 98-108.

Phiri, R., Mavinkere Rangappa, S., & Siengchin, S. (2024). Agro-waste for renewable and sustainable green production: A review. Journal of Cleaner Production, 434, 139989. https://doi.org/10.1016/j.jclepro.2023.139989

Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European Journal of Soil Biology, 57, 1-8.
https://doi.org/10.1016/j.ejsobi.2013.03.006

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant Growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329

Upadhyay, S.K., Singh, G., Rani, N., Rajput, V.D., Seth, C.S., Dwivedi, P., Minkina, T., Wong, M.H., Show, P.L., & Khoo, K.S. (2024). Transforming bio-waste into value-added products mediated microbes for enhancing soil health and crop production: Perspective views on circular economy. Environmental Technology & Innovation, 34, 103573. https://doi.org/10.1016/j.eti.2024.103573

Vijayan, L., Arumugam, M., Palaniyappan, S., Jayaraman, S., Brown, P.B., Kari, Z.A., Abdel-Warith, A.-W.A., Younis, E.M., & Ramasamy, T. (2024). Utilization of sustainable agri-waste watermelon rind for fishmeal in Labeo rohita diets: Effects on nutritional indices, hemato-biochemical properties, histoarchitechtural traits, amino acid and fatty acid profiles. Aquaculture Reports, 36, 102045. https://doi.org/10.1016/j.aqrep.2024.102045

Wang, F., Xie, C., Ye, R., Tang, H., Jiang, L., & Liu, Y. (2023). Development of active packaging with chitosan, guar gum and watermelon rind extract: Characterization, application and performance improvement mechanism. International Journal of Biological Macromolecules, 227, 711-725. https://doi.org/10.1016/j.ijbiomac.2022.12.210

Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of The Total Environment, 946, 174225. https://doi.org/10.1016/j.scitotenv.2024.174225

Wong, J.W.C., Karthikeyan, O.P., & Selvam, A. (2017). Biological nutrient transformation during composting of pig manure and paper waste. Environmental Technology, 38(6), 754-761. https://doi.org/10.1080/09593330.2016.1211747

Xu, Z., Wang, S., Li, R., Li, H., Zhang, C., Zhang, Y., Zhang, X., Quan, F., & Wang, F. (2024). Enhancement of microbial community dynamics and metabolism in compost through ammonifying cultures inoculation. Environmental Research, 255, 119188. https://doi.org/10.1016/j.envres.2024.119188

Zhang, S., Li, Y., Jiang, L., Chen, X., Zhao, Y., Shi, W., & Xing, Z. (2024). From organic fertilizer to the soils: What happens to the microplastics? A critical review. Science of The Total Environment, 919, 170217. https://doi.org/10.1016/j.scitotenv.2024.170217

Zhou, Y., Zhang, J., Zhang, Z., Wang, P., & Xia, S. (2019). pH dependent of the waste activated sludge reduction by short-time aerobic digestion (STAD) process. Science of The Total Environment, 649, 1307-1313. https://doi.org/10.1016/j.scitotenv.2018.08.411