Synthesis of Fe₃O₄@Zeolite NaA from rice husk ash for efficient methylene blue adsorption
Main Article Content
Abstract
This study synthesized Fe3O4@zeolite NaA with SiO2 from rice husk ash and evaluated its adsorption of methylene blue from water. As-synthesized adsorbent was characterized by advanced analytical methods. The results showed that the adsorbent was in the size of 0.981±0.235 μm with a cubic and spherical shape and its specific surface area, pore diameter, and pore volume of 82.41 m2/g, 1.019 nm, and 0.224 cm3/g, respectively. The Fe3O4@zeolite NaA magnetization was 17.65 emu/g, and its point of zero charge was at 7.48. The adsorption achieved the highest efficiency of 86.5% at room temperature, pH 9 within 25 min with an initial concentration of 20 mg/L. This adsorption was a physical interaction and fitted to pseudo-second-order kinetics and Freundlich isotherm. Fe3O4@zeolite NaA was magnetically separated from the solution using a magnet and could be reused for two to three cycles. These findings suggested that Fe3O4@zeolite NaA can be a potential adsorbent for dye removal in industry.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
ALOthman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5, 2874-2902. https://doi.org/10.3390/ma5122874
Atar, N., Olgun, A., & Wang, S. (2012). Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: batch and fixed-bed system studies. Chemical Engineering Journal, 192(1), 1-7. https://doi.org/10.1016/j.cej.2012.03.067
Cao, J., Wang, P., Shen, J., & Sun, Q. (2020). Core-shell Fe3O4@zeolite NaA as an Adsorbent for Cu2+. Materials, 13(21), 5047. https://doi.org/10.3390/ma13215047
Chandrakant, R. H., Ananda, J. J., Dipak, V. P., Naresh, M. M., & Aniruddha, B. P. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090
Cheung, W. H., Ng, J. C. Y., & Mckey, G. (2003). Kinetic analysis of the sorption of copper(II) ions on chitosan. Journal of Chemical Technology and Biotechnology, 78, 562-571. https://doi.org/10.1002/jctb.836
EL-Mekkawi, D. M., Ibrahim, F. A., & Selim, M. M. (2016). Removal of methylene blue from water using zeolites prepared from Egyptian kaolins collected from different sources. Journal of Environmental Chemical Engineering, 4, 1417-1422. https://doi.org/10.1016/j.jece.2016.01.007
Galán, J., Rodríguez, A., Gómez, J. M., Allen, S. J., & Walker, G. M. (2013). Reactive dye adsorption onto a novel mesoporous carbon. Chemical Engineering Journal, 219, 62-68. https://doi.org/10.1016/j.cej.2012.12.073
Ghoroi, C., Han, X., To, D., Jallo, L., Gurumurthy, L., & Davé, R. N. (2013). Dispersion of fine and ultrafine powders through surface modification and rapid expansion. Chemical Engineering Science, 85, 11-24. https://doi.org/10.1016/j.ces.2012.02.038
Hydari, S., Sharififard, H., Nabavinia, M., & Parvizi, M. R. (2012). A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chemical Engineering Journal, 193-194, 276-282. https://doi.org/10.1016/j.cej.2012.04.057
Jia, P., Tan, H., Liu, K., & Gao, W. (2018). Removal of methylene blue from aqueous solution by bone char. Applied Science, 8, 1903. https://doi.org/10.3390/app8101903
Jiang, Z., Yang, J., Ma, H., Ma, X., & Yuan, J. (2016). Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions. Clean Technologies and Environmental Policy, 18, 629-637. https://doi.org/10.1007/s10098-015-1072-0
Jin, X., Jiang, X. Q., Shan, X. Q., Pei, Z. G., & Chen, Z. (2008). Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. Journal of Colloid and Interface Science, 328, 243-247. https://doi.org/10.1016/j.jcis.2008.08.066
Karimzadeh, I., Aghazadeh, M., Ganjali, M. R., Norouzi, P., Shirvani-Arani, S., Doroudi, T., Kolivand, P. H., Marashi, S. A., & Gharailou, D. (2016). A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Materials Letters, 179, 5-8. https://doi.org/10.1016/j.matlet.2016.05.048
Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B., Johir, M. A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, 100019. https://doi.org/10.1016/j.envadv.2020.100019
Kocaoba, S., Orhan, Y., & Akyüz, T. (2007). Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination, 214, 1-10. https://doi.org/10.1016/j.desal.2006.09.023
Kosmulski, M. (2012). IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides. Advances in Colloid and Interface Science, 171-172, 77-86. https://doi.org/10.1016/j.cis.2012.01.005
Kowanga, K. D., Gatebe, E., Mauti, G. O., & Mauti, E. M. (2016). Correspondence: Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder. The Journal of Phytopharmacology, 5, 71-78. https://doi.org/10.31254/phyto.2016.5206
Kumar, A., & Naskar, M. K. (2019). Single-step process without organic template for the formation of zeolite A from RHA. International Journal of Applied Ceramic Technology, 16(4), 1525-1532. https://doi.org/10.1111/ijac.13206
Liang, Y., Ouyang, J., Wang, H., Wang, W., Chui, P., & Sun, K. (2012). Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+, Er3+ microspheres. Applied Surface Science, 258, 3689-3694. https://doi.org/10.1016/j.apsusc.2011.12.006
Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., & Frost, R. L. (2013a). Effect of Fe3O4 addition on removal of Zeolite NaA-ammonium complex. Journal of Colloid and Interface Science, 390(1), 204-210. https://doi.org/10.1016/j.jcis.2012.09.010
Liu, H., Peng, S., Shu, L., Chen, T., Bao, T., & Frost, R. L. (2013b). Magnetic zeolite NaA: Synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+. Chemosphere, 91(11), 1539-1546. https://doi.org/10.1016/j.chemosphere.2012.12.038
López‑Luna, J., Ramírez‑Montes, L. E., Martinez‑Vargas, S., Martínez, A. I., Mijangos‑Ricardez, O. F., González‑Chávez, M. d. C. A., Carrillo‑González, R., Solís‑Domínguez, F. A., Cuevas‑Díaz, M. d. C., & Vázquez‑Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Science, 1, 950. https://doi.org/10.1007/s42452-019-0977-3
Mai, N. T. N., Thu, N. T. A., Trang, N. T. B., Phu, P. Q., Thien, D. V. H., Thanh, L. H. V., & Hanh, C. L. N. (2021). Adsorption of chromium (VI) ion using zeolite NaA/Fe3O4 composite derived from rice husk ash. In IOP Conference Series: Earth and Environmental Science, 947(1), 012012. https://doi.org/10.1088/1755-1315/947/1/012012
Mohammed, N., Grishkewich, N., Waeijen, H. A., Berry, R. M., & Tam, K. C. (2016). Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydrate Polymers, 136, 1194-1202. https://doi.org/10.1016/j.carbpol.2015.09.099
Nibou, D., Amokrane, S., Mekatel, H., & Lebaili, N. (2009). Elaboration and characterization of solid materials of types zeolite NaA and faujasite NaY exchanged by zinc metallic ions Zn2+. Physics Procedia, 2(3), 1433-1440. https://doi.org/10.1016/j.phpro.2009.11.113
Oladoye, P. O. (2022). Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: A state-of-the-art review. Chemosphere, 287, 132130. https://doi.org/10.1016/j.chemosphere.2021.132130
Panayotova, M. I. (2001). Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Management, 21(7), 671-676. https://doi.org/10.1016/S0956-053X(00)00115-X
Perić, J., Trgo, M., & Medvidović, N. V. (2004). Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Research, 38(7), 1893-1899. https://doi.org/10.1016/j.watres.2003.12.035
Rehman, R., Anwar, J., Mahmud, T., Salman, M., Shafique, U., & Zaman, W. U. (2011). Removal of murexide (dye) from aqueous media using rice husk as an adsorbent. Journal of the Chemical Society of Pakistan, 33(4), 598-603
Rida, K., Bouraoui, S., & Hadnine, S. (2013). Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Applied Clay Science, 83-84, 99-105. https://doi.org/10.1016/j.clay.2013.08.015
Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Applied Chemistry, 57, 603-619. https://doi.org/10.1351/pac198557040603
Thanh, L. H. V., Lan, T. N. P., Quyen, T. T. B., Nam, H. Q., & Tho, L. P. B. (2020). Adsorption behavior of Cr(VI) ion on Fe3O4@SiO2 with SiO2 originated from rice husk ash. Can Tho University Journal of Science, 56(3), 9-19. https://doi.org/10.22144/ctu.jvn.2020.048
Tran, N. B. T., Duong, N. B., & Le, N. L. (2021). Synthesis and characterization of magnetic Fe3O4/zeolite NaA nanocomposite for the adsorption removal of methylene blue potential in wastewater treatment. Journal of Chemistry, 2021, 1-14. https://doi.org/10.1155/2021/6678588
Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508. https://doi.org/10.1016/j.chemosphere.2023.138508
Vidovix, T. B., Quesada, H. B., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2022). Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environmental Technology, 43(20), 3047-3063. https://doi.org/10.1080/09593330.2021.1914180
Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution using graphene oxide. Journal of Colloid and Interface Science, 359(1), 24-29. https://doi.org/10.1016/j.jcis.2011.02.064
Yusof, A. M., Nizam, N. A., & Rashid, N. A. A. (2010). Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. Journal of Porous Materials, 17, 39-47. https://doi.org/10.1007/s10934-009-9262-y
Zhang, X., Tang, D., & Jiang, G. (2013). Synthesis of zeolite NaA at room temperature: The effect of synthesis parameters on crystal size and its size distribution. Advanced Powder Technology, 24(3), 689-696. https://doi.org/10.1016/j.apt.2012.12.010