Tran Thanh Tuan * , Nguyen Viet Nhan Hoa , Nguyen Thi Hong and Lee Man Seung

* Corresponding author (

Main Article Content


Smelting reduction of spent lithium-ion batteries (LIBs) produces metallic alloys containing Co, Ni, Cu, Mn, and Fe. Finding suitable reagents in terms of efficiency, economics, and friendly environment for the dissolution of these metals from the alloys is very important for the recovery process of the metals. In this work, the employment of ferric chloride solution for the dissolution of the metals from the alloys was studied. The effect of parameters like FeCl3 concentration, temperature, time, and pulp density on the leaching efficiency of metals was investigated. Our results indicate that ferric ions in the leaching solutions act as oxidizing agents for the dissolution of the metals, while chloride anions as ligands for the formation of the complexes of the dissolved metal ions. The best conditions for the dissolution of full metals were 0.7 mol/L FeCl3, 12.5 g/L pulp density, 22oC, and 30 min. In comparison with HCl or H2SO4 leaching agents, ferric chloride shows some advantages like a decrease in the dosage of acids and oxidizing agents, fast reaction kinetics, and low energy consumption. With its advantages, ferric chloride solution is considered a potential leaching agent in the recovery process of valuable metals from spent LIBs.

Keywords: Cobalt, ferric chloride, leaching, nickel, spent lithium-ion batteries

Article Details


Asadi, D. E., Karimi, G. H., Zandevakili, S., & Goodarzi, M. (2020). A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review, 42(7), 451-472.

Chen, L., Chao, Y., Li, X., Zhou, G., Lu, Q., Hua, M., Li, H., Ni, X., Wu, P., & Zhu, W. (2021). Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry, 23(5), 2177-2184.

Cordoba, E. M., Munoz, J. A., Blazquez, M. L., Gonzalez, F., & Ballester, A. (2008). Leaching of chalcopyrite with ferric ion. Part III: Effect of redox potential on the silver-catalyzed process. Hydrometallurgy, 93(3-4), 97-105.

Dutta, D., Kumari, A., Panda, R., Jha, S., Gupta, D., & Goel, S. (2018). Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Separation and Purification Technology, 200, 327-334.

Djoudi, N., Le Page, M. M., & Muhr, H. (2019). Precipitation of cobalt salts for recovery in leachates. Chemical Engineering Technology, 42(7), 1492-1499.

Lin, J., Liu, C., Cao, H., Yang, Y., Chen, R., Li, L., & Sun, Z. (2019). Environmentally benign process on selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chemistry, 21, 5904-5913.

Kaplun, K., Li, J., Kawashima, N., & Gerson, A. R. (2011). Cu and Fe chalcopyrite leach activation energies and the effect of added Fe3+. Geochimica et Cosmochimica Acta, 75(20), 5865-5878.

Meshram, P., Abhilash, & Pandey, P. D. (2019). Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review, 40(3), 157-193.

Millero, F. J., Yao, W., & Aicher, J. (1995). The speciation of Fe(II) and Fe(III) in natural waters. Marine Chemistry, 50(1-4), 21-39.

Moon, H. S., Song, S. J., Tran, T. T., & Lee, M. S. (2021). Recovery of pure Ni(II) compounds by precipitation from the hydrochloric acid solution containing Si(IV). Resources Recycling, 30(6), 36-42.

Or, T., Gourley, S. W. D., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6-43.

Prasetyo, E., Muryanta, W. A., Anggraini, A. G., Sudibyo, S., Amin, M., & Muttaqii, M. A. (2022). Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium‑ion batteries. Journal of Material Cycles and Waste Management, 24, 927-938.

Gao, W. F., Zhang, X. H., Zheng, X. H., Lin, X., Cao, H. B., Zhang, Y., &Sun, Z. (2017). Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process. Environmental Science & Technology, 51(3), 1662-1669.

Gratz, E., Sa, Q., Apelian, D., & Wang, Y. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255-262.

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575, 75-86.

Hogfeldt, E., 1982. Stability constants of metal-ion complexes, Part A: inorganic ligands Vol.21 aus: IUPAC Chemical data series. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, pp. 87-88.

Petrucci., R. H., Herring, F. G., Madura, J. D., Bissonnette, C. (2011). General chemistry – Principles and Modern Application, 10th ed. Pearson Canada Inc., Toronto, Ontario. Pp. A27-A29.

Persson, I. (2018). Ferric chloride complexes in aqueous solution: an EXAFS study. Journal of Solution Chemistry, 47, 797-805.

Roman, M. F. S., Ortiz-Gandara, I., Bringas, E., and Ibanez, R. (2018). Membrane selective recovery of HCl. Zinc and iron from simulated mining effluents. Desalination, 440, 78-87.

Santos, M. P. D., Garde, I. A. A., Ronchini, C. M. B., Filho, L. C., Souza, G. B. M. D., Abbade, M. L. F., Oliveira, J. A. D. (2021). A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib. Resources, Conservation and Recycling, 175, 105863.

Silva, R. A., Zhang, Y., Hawboldt, K., & James, L. A. (2021). Study on iron-nickel separation using ion exchange using resins with different functional groups for potential iron sub-production. Mineral Processing and Extractive Metallurgy Review, 42(2), 75-89.

Thompson, D. L., Hartley, J. M., Lambert, S. M., Shiref, M., Harper, G. D. J., Kendrick, E., Anderson, P., Ryder, K. S., Gaines, L., & Abbot, A. P. (2020). The importance of design in lithium ion battery recycling-a critical review. Green Chemistry, 22, 7585-7603.

Tran, T. T., Moon, H. S., & Lee, M. S. (2021). Co, Ni, Cu, Fe, and Mn Integrated Recovery Process via Sulfuric Acid Leaching from Spent Lithium-ion Batteries Smelted Reduction Metallic Alloys. Mineral Processing and Extractive Metallurgy Review (Published online).

Tran, T. T., Moon, H. S., & Lee, M. S. (2022a). Recovery of cobalt, nickel and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process. Mineral Processing and Extractive Metallurgy Review, 43(4), 453-465.

Tran, T. T., Moon, H. S., & Lee, M. S. (2022b). Separation of cobalt, nickel, and copper from synthetic metallic alloy by selective dissolution with acid solutions containing oxidizing agent. Mineral Processing and Extractive Metallurgy Review, 43(3), 313-325

Tran, T. T., Moon, H. S., & Lee, M. S. (2022c). Recovery of valuable metals from the. hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries. Journal of Chemical Technology and Biotechnology, 97(5), 1247-1258.

Xu, J., Thomas, H. R., Francis, R. W., Lum, K. R., Wang, J., & Liang, B. (2008). A review of processes and technologies for the recycling of lithium ion secondary batteries. Journal of Power Sources, 177(2), 512-527.

Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2020). On the sustainability of lithium ion battery industry - A review and perspective. Energy Storage Materials, 36, 186-212.

Zeng, X., Li, J., & Singh, N. (2014). Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165.

Zhang, Y., Wang, Y., Zhang, H., Li, Y., Zhang, Z., & Zhang, W. (2020). Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources, Conservation & Recycling, 156, 104688.

Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., & Sun, Z. (2018). A mini-review on metal recycling from spent lithium ion batteries. Engineering, 4(3), 361-370.

Zhao, Q., Hu, L., Li, W., Liu, C., Jiang, M., & Shi, J. (2020). Recovery and regeneration of spent lithium-ion batteries from new energy vehicles. Frontiers in Chemistry, 8, 1-5.

Zhao, R., & Pan, P. (2011). A spectrophotometric study of Fe(II)-chloride complexes in aqueous solutions from 10 to 100oC. Canadian Journal of Chemistry, 79(2), 131-144.

Zhou, L. F., Yang, D., Du, T., Gong, H., & Luo, W. B. (2020). The current process for the recycling of spent lithium ion batteries. Frontiers in Chemistry, 8, 1-7.