Cao Luu Ngoc Hanh * , Luong Huynh Vu Thanh , Dang Huynh Giao , Ho Quoc Phong , Vo Thi Nhu Y and Dang Thi Viet Anh

* Corresponding author (clnhanh@ctu.edu.vn)

Main Article Content

Abstract

This study successfully combined Fe3O4 nanoparticles (made by co-precipitation technique) and lignin (extracted from sugarcane bagasse) as magnetic-lignin nanoparticles. The factors affecting the synthesis such as ratio of Fe3O4/lignin and reaction time were investigated. Fe3O4@lignin nanoparticles were obtained at optimal conditions, including the ratio between Fe3O4 and lignin of 1:0.5 and the reaction time of 9 hours. The resulting nanoparticles were spherical and had a fairly uniform particle size distribution, with an average diameter of 53.42 ± 5.12 nm (obtained from SEM images). The thermal stability of Fe3O4/lignin nanoparticles is quite stable and lignin content in hybrid Fe3O4/lignin particles is estimated to account for about 32.82%. FTIR results show a successful combination of Fe3O4 and lignin. The magnetic saturation of Fe3O4/lignin nanoparticles was determined by a vibrating sample magnetometer (VSM) with values of 50.8 emu.g-1, showed that the material keeps its super-paramagnetic properties, which is critical for their application in drug delivery field.

Keywords: Fe3O4, magnetic-lignin nanoparticles, nanolignin

Article Details

References

Arni, S. A. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: a review, Industrial Crops and Products, 115, 330-339.

Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W., & Mahmoudi, E. (2022). Synthesis of Fe3O4 nanoparticles with different shapes through a co-precipitation method and their application, Journal of the Minerals, 74, 3531–3539.

Figueiredo, P., Lintinen, K., Kiriazis, A., Hynninen, V., Liu, Z., Bauleth-Ramos, T., Rahikkala, A., Correia, A., Kohout, T., Sarmento, B., Yli-Kauhaluoma, J., Hirvonen, J., Ikkala, O., Kostiainen, M. A., & Santos, H. A. (2017). In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 121, 97-108.

Ha, B. T., Thanh & H. T. (2017). Synthesis of Fe3O4/SiO2 adsorbent materials used to treat Cr(VI) in wastewater, Journal of Science Technology and Food, 12, 43 – 49.

Hanh, C. L. N., Thanh, L. H. V., Tuan, N. T., Thuyen, N. T. B., Mai, N. T. N., Huyen, N. T. M., & Tan, V. D. (2022). Size-controlled synthesis of lignin particles from sugarcane bagasse supported by probe-type sonication, Can Tho University Journal of Science, 58(2), 51-65.

Hasany, S. F., Abdurahman, N. H., Sunarti, A. R., & Jose, R. (2013). Magnetic Iron oxide nanoparticles: chemical synthesis and applications review, Current Nanoscience, 9, 561-575.

Hoa, N. T., Tuong, N. M., & Phuong, N. T. (2020). Study on fabrication of composite materials based on nano chitosan/Fe3O4 applied to lead treatment in aqueous solution, Journal of Military Science and Technology, 9, 205 – 211.

Huang, C., Pei, W., Shang, W., Liang, C., & Yong, Q. (2020). Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin – phenol – formaldehyde adhesive, Industrial Crops and Products, 154(6), 1126368.

Kim, Y. S., & Kadla, J. F. (2010). Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization, Biomacromolecules, 11(4), 981–988.

Liu, K., Zheng, D., Lei, H., Liu, J., Lei, J., Wang, L., & Ma, X. (2018). Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs, ACS Biomaterials Science and Engineering, 4(5), 1730–1737.

Min, D., Zhang, Q., Li, M., Guo, C., Wan, G., Jia, Z., & Wang, S. (2019). Fe3O4 nanoparticles loaded on lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2, Nanomaterials, 9(2), 210.

Pei, W., Shang, W., Liang, C., Jiang, X., Huang, C., & Yong, Q. (2020). Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive, Industrial Crops and Products, 154, 112638.

Thanh, L. H. V., Han, K. G., Han, N. N., Pha, B. Y., & Mai, N. T. N. (2021). Synthesis of Fe3O4@SiO2 attached Fe0 and its treatment of methyl blue in aqueous solution, Can Tho University Journal of Science, 57(4), 40-52.

Thang, N. Q., Quang, H. D., Le, T. C., & Hien, L. T. T. (2019). Characterization of structure, morphology, properties, Fe3O4 magnetic nanoparticles synthesized by thermal decomposition method, Vinh University Journal of Science, 47, 55 – 62.

Vasquez, E. S., Petrie, F. A., Gorham, J. M., Busch, R. T., & Leontsev, S. O. (2021). Facile fabrication and characterization of kraft lignin@Fe3O4 nanocomposites using pH driven precipitation: Effects on increasing lignin content, International Journal of Biological Macromolecules, 181, 313 – 321.

Zhao, J., Zheng, D., Tao, Y., Li, Y., Wang, L., Liu, J., He, J., & Lei, J. (2020). Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs, Biochemical Engineering Journal, 156, 107526.

Most read articles by the same author(s)

1 2 3 > >>