Using efficient bimetallic FeCo-ZIFs catalyst for Ciprofloxacin degradation in the presence of potassium peroxydisulfate
Main Article Content
Abstract
Solvothermal synthesis was used for the successful manufacture FeCo-ZIFs bimetallic materials. The materials' properties were determined using a variety of techniques, including Fourier-transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen adsorption ability. The obtained FeCo-ZIFs were acted as catalysts to remove Ciprofloxacin in aqueous media with high efficiency. It showed that the decomposition efficiency of Ciprofloxacin reached 92.1% with a weight of 0.4 g/L FeCo-ZIFs, and 0.3 g/L potassium peroxydisulfate for 30 min at room temperature (30±2oC). According to research, this is the first time FeCo-ZIFs was applied to treat Ciprofloxacin.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Chao, F., Wang, B., Ren, J., Lu, Y., Zhang, W., Wang, X., . . . Chen, J. (2019). Micro‑meso-macroporous FeCo-NC derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. Journal of Energy Chemistry, 35, 212-219. https://doi.org/10.1016/j.jechem.2019.03.025
Chen, Z., Zhang, G., Wen, Y., Chen, N., Chen, W., Regier, T., . . . Sun, S. (2022). Atomically dispersed Fe-Co bimetallic catalysts for the promoted electroreduction of carbon dioxide. Nano-micro letters, 14(1), 25. https://doi.org/10.1007/s40820-021-00746-9
Dang, H. G., Tuong, V. T., Thu, N. H. T., Van, B. N., Ho, N. T. T., & Pham, V. T. (2021). Bimetallic CuCo-Zeolitic imidazole frameworks (CuCo-ZIFs): Synthesis and characterization. CTU Journal of Innovation and Sustainable Development, 13(1), 78-84.
https://doi.org/10.22144/ctu.jen.2021.010
Farghal, H. H., Hassanein, D. M., Attia, A., Yacoub, N., Madkour, T., & El-Sayed, M. M. (2021). Deploying nanoparticle-doped polymeric membranes in treating water contaminated with ciprofloxacin. Paper presented at the Proceedings.
Gao, J., Han, D., Xu, Y., Liu, Y., & Shang, J. (2020). Persulfate activation by sulfide-modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin. Separation and Purification Technology, 235, 116202. https://doi.org/10.1016/j.seppur.2019.116202
Hu, Z., Guo, Z., Zhang, Z., Dou, M., & Wang, F. (2018). Bimetal zeolitic imidazolite framework-derived iron-, cobalt-and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS applied materials & interfaces, 10(15), 12651-12658. https://pubs.acs.org/doi/abs/10.1021/acsami.8b00512
Ighalo, J. O., Rangabhashiyam, S., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G., & Igwegbe, C. A. (2022). Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption–a review. Journal of Industrial and Engineering Chemistry, 105, 34-48. https://doi.org/10.1016/j.jiec.2021.09.029
Iqbal, J., Shah, N. S., Khan, J. A., Khan, K., Wakeel, M., Abdelghani, H. T. M., . . . Boczkaj, G. (2024). Hydroxyl and sulfate radical-based degradation of ciprofloxacin using UV-C and/or Fe2+-catalyzed peroxymonosulfate: Effects of process parameters and toxicity evaluation. Journal of Photochemistry and Photobiology A: Chemistry, 447, 115246. https://doi.org/10.1016/j.jphotochem.2023.115246
Le, T. T., Dang, B. H., Nguyen, T. Q., Nguyen, D. P., & Dang, G. H. (2023). Highly efficient removal of tetracycline and methyl violet 2B from aqueous solution using the bimetallic FeZn-ZIFs catalyst. Green Processing and Synthesis, 12(1), 20230122. https://doi.org/10.1515/gps-2023-0122
Li, B., Wang, Y.-F., Zhang, L., & Xu, H.-Y. (2022). Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere, 291, 132954. https://doi.org/10.1016/j.chemosphere.2021.132954
Li, J., Yang, L., Lai, B., Liu, C., He, Y., Yao, G., & Li, N. (2021). Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal. Chemical Engineering Journal, 414, 128674. https://doi.org/10.1016/j.cej.2021.128674
Li, X., Yan, X., Hu, X., Feng, R., Zhou, M., & Wang, L. (2020). Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 397, 125533. https://doi.org/10.1016/j.cej.2020.125533
Lou, X., Ning, Y., Li, C., Hu, X., Shen, M., & Hu, B. (2018). Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Sci China Mater, 61(8), 1040-1048.
https://doi.org/10.1007/s40843-017-9200-5
Méndez-Paz, D., Omil, F., & Lema, J. (2005). Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water research, 39(5), 771-778. https://doi.org/10.1016/j.watres.2004.11.022
Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization. Journal of cleaner production, 171, 1203-1214. https://doi.org/10.1016/j.jclepro.2017.10.091
Nguyen, T.-B., Thai, V.-A., Chen, C.-W., Huang, C., Doong, R.-a., Chen, L., & Dong, C.-D. (2022). N-doping modified zeolitic imidazole Framework-67 (ZIF-67) for enhanced peroxymonosulfate activation to remove ciprofloxacin from aqueous solution. Separation and Purification Technology, 288, 120719. https://doi.org/10.1016/j.seppur.2022.120719
Noor, T., Raffi, U., Iqbal, N., Yaqoob, L., & Zaman, N. (2019). Kinetic evaluation and comparative study of cationic and anionic dyes adsorption on Zeolitic imidazolate frameworks based metal organic frameworks. Materials Research Express, 6(12), 125088.
https://doi.org/10.1088/2053-1591/ab5bdf
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., . . . & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191.
https://doi.org/10.1073/pnas.0602439103
Pirsaheb, M., Hossaini, H., & Janjani, H. (2020). Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics. Microchemical Journal, 153, 104430. https://doi.org/10.1016/j.microc.2019.104430
Shams, M., Niazi, Z., Saeb, M. R., Moghadam, S. M., Mohammadi, A. A., & Fattahi, M. (2024). Tailoring the topology of ZIF-67 metal-organic frameworks (MOFs) adsorbents to capture humic acids. Ecotoxicology and Environmental Safety, 269, 115854.
https://doi.org/10.1016/j.ecoenv.2023.115854
Sisi, A. J., Fathinia, M., Khataee, A., & Orooji, Y. (2020). Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018. https://doi.org/10.1016/j.molliq.2020.113018
Tan, J. C., Bennett, T. D., & Cheetham, A. K. (2010). Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proceedings of the National Academy of Sciences, 107(22), 9938-9943. https://doi.org/10.1073/pnas.1003205107
Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. https://doi.org/10.1016/j.cej.2017.11.059
Wang, L., Guan, Y., Qiu, X., Zhu, H., Pan, S., Yu, M., & Zhang, Q. (2017). Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@ metal–organic framework. Chemical Engineering Journal, 326, 945-955. https://doi.org/10.1016/j.cej.2017.06.006
Yao, W., Guo, H., Liu, H., Li, Q., Wu, N., Li, L., . . . Yang, W. (2020). Highly electrochemical performance of Ni-ZIF-8/N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchemical Journal, 152, 104357. https://doi.org/10.1016/j.microc.2019.104357
Zhong, G., Liu, D., & Zhang, J. (2018). The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6(5), 1887-1899. https://doi.org/10.1039/C7TA08268A