Dang Huynh Giao * , Vi Truong Tuong , Ngan Ho Thi Thu , Binh Nguyen Van , Ho Ngoc Tri Tan and Pham Van Toan

* Corresponding author (dhgiao@ctu.edu.vn)

Main Article Content

Abstract

A kind of bimetallic Cu/Co zeolitic imidazole frameworks (CuCo-ZIFs) has been successfully synthesized in ethanol solvent by ultrasound method. The morphology, structural features and physicochemical properties of CuCo-ZIFs were analyzed by several techniques including powder X-ray diffraction, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy,, energy-dispersive X-ray spectroscopy, scanning electron microscope, and nitrogen physisorption measurements. The results showed that CuCo-ZIFs nanocrystals demonstrated a ZIF-67-like polyhedral morphology with high thermal stability. The Brunauer-Emmett-Teller surface areas of CuCo-ZIFs were achieved approximately 1172 m2/g, while its Langmuir surfaces areas were achieved approximately 1907 m2/g.

Keywords: Bimetallic, CuCo-ZIFs, ultrasound, zeolitic imidazole frameworks

Article Details

References

Chen, E. X., Yang, H. & Zhang, J. (2014). Zeolitic imidazolate framework as formaldehyde gas sensor. Inorganic Chemistry, 53(11), 5411-5413. https://doi.org/10.1021/ic500474j

Chen, W., Jia, Y., Yu, X., et al. (2020). Facile synthesis of bimetallic zeolite imidazolate framework with enhanced lithium storage performance. Ionics, 26(21), 1-9. https://doi.org/10.1007/s11581-019-03390-x

Dey, C., & Banerjee, R. (2013). Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chemical Communications, 49(59), 6617-6619. https://doi.org/10.1039/C3CC42904K

Gholinejad, M., Naghshbandi, Z. & Sansano, J. M. (2020). Co/Cu bimetallic ZIF as new heterogeneous catalyst for reduction of nitroarenes and dyes. Applied Organometallic Chemistry, 34(4), 1-10. https://doi.org/10.1002/aoc.5522

Han, X., Ling, X., Wang, Y., et al. (2019). Generation of nanoparticle, atomic-czluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc–air batteries. Angewandte Chemis, 131(16), 5413-5418.  https://doi.org/10.1002/anie.201901109

Kaur, G., Rai, R. K., Tyagi, D., et al. (2016). Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. Journal of Materials Chemistry A, 4(39), 14932-14938. https://doi.org/10.1039/C6TA04342A

Khan, N. A., & Jhung, S. H. (2015). Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews, 285, 11-23. https://doi.org/10.1016/j.ccr.2014.10.008

Kim, K. H., & Kim, K. B. (2008). Ultrasound assisted synthesis of nano-sized lithium cobalt oxide. Ultrasonics Sonochemistry, 15(6), 1019-1025. https://doi.org/10.1016/j.ultsonch.2007.11.004

Li, Y., Zhou, K., He, M., & Yao, J. (2016). Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials, 234, 287-292. https://doi.org/10.1016/j.micromeso.2016.07.039

Lu, G., & Hupp, J. T. (2010). Metal−Organic Frameworks as Sensors: A ZIF-8 Based Fabry−Pérot Device as a Selective Sensor for Chemical Vapors and Gases. Journal of the American Chemical Society, 132(23), 7832-7833. https://doi.org/10.1021/ja101415b

Ma, J., Wang, H., Yang, X., Chai, Y., & Yuan, R. (2015). Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 3(22), 12038-12043. https://doi.org/10.1039/C5TA00890E

Mu, L., Liu, B., Liu, H., Yang, Y., Sun, C., & Chen, G. (2012). A novel method to improve the gas storage capacity of ZIF-8. Journal of Materials Chemistry, 22(24), 12246-12252. https://doi.org/10.1039/C2JM31541F

Song, Q., Nataraj, S. K., Roussenova, M. V., Tan, J. C., Hughes, D. J., Li, W., ... & Sivaniah, E. (2012). Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 5(8), 8359-8369. https://doi.org/10.1039/C2EE21996D

Suslick, K. S. (1990). Sonochemistry. Science, 247(4949), 1439-1445.  DOI: 10.1126/science.247.4949.1439

Tan, J. C., Bennett, T. D., & Cheetham, A. K. (2010). Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proceedings of The National Academy Of Sciences, 107(22), 9938-9943. https://doi.org/10.1073/pnas.1003205107

Yang, H., He, X. W., Wang, F., Kang, Y., & Zhang, J. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22(41), 21849-21851. https://doi.org/10.1039/C2JM35602C

Yao, J., & Wang, H. (2014). Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chemical Society Reviews, 43(13), 4470-4493. https://doi.org/10.1039/C3CS60480B

Zhang, F., Wei, Y., Wu, X., Jiang, H., Wang, W., & Li, H. (2014). Hollow Zeolitic Imidazolate Framework Nanospheres as Highly Efficient Cooperative Catalysts for [3+3] Cycloaddition Reactions. Journal of the American Chemical Society, 136(40), 13963-13966. https://doi.org/10.1021/ja506372z

Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., & Verpoort, F. (2017). Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. Journal of Materials Chemistry A, 5(3), 952-957. https://doi.org/10.1039/C6TA07860E

Most read articles by the same author(s)