Study on fabrication and application of unsaturated polyester composite materials reinforced with Eucalyptus/Melaleuca wood shavings
Main Article Content
Abstract
A novel strategy combining Eucalyptus/Melaleuca shavings and unsaturated polyester resin was used to fabricate composite materials with outstanding aesthetics and good mechanical strength by using a hot press and manual method. The composite material produced has a flexural strength of 49.15/49.32 MPa, tensile strength of 22.38/23.83 MPa, and impact strength of 4.89/4.76 kJ.m-2 under optimal processing conditions of 120oC, 3 minutes, 150 kg.cm-2 pressure, and 40% shaving content by volume. Treating the shavings with a 2% NaOH solution improves the interface between the shavings and resin, increasing the flexural strength of the Eucalyptus/Melaleuca shavings composite material to 77.06/77.12 MPa. Some of the manufactured products, such as table and chair tops, plant pots, desk cabinets, and wall shelves, highlight the possibilities of employing scrap shavings to create new materials for use in municipal and industrial applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Adeniran, A. T. (2021). Properties of particleboard madefrom recycled polystyrene and cocos nucifera stemparticles. Open Journal of Agricultural Research, 1(1), 1–7. doi:10.31586/ojar.2021.010101
Al-Mosawi, A. I., Rijab, M. A., Abdullah, N., & Mahdi, S. (2014). Flexural strength of fiber reinforced composite. International Journal of Enhanced Research in Science Technology & Engineering, 2(1), 4–7.
Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F., & Sofuoglu, A. (2020). Utilization of municipal plastic and wood waste in industrial manufacturing of wood plastic composites. Waste Biomass Valorization, 11, 5419–5430.
Giang, N. T. H., Thuong, H. M., & Tung, L. V. (2017). Effect of humidity on internal temperature variation of the board during high frequency heat pressing of bamboo block plywood. Journal of Forestry Science and Technology, 20(10), 127-133.
Hernández, D., Fernández-puratich, H., Cataldo, F., & González, J. (2020). Particle boards made with Prunus avium fruit waste. Case Studies in Construction, 12, 4–9. doi:10.1016/j.cscm.2020.e00336
Kibet, T., Tuigong, D., R., Maube, O., Mwasiagi, J. I., & Gupta, M. (2022). Mechanical properties of particleboard made from leather shavings and waste papers. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2076350
Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fibers for use in natural fiber-reinforced composites: A review. J. Polym. Environ., 15, 25–33.
Luong, T. T. M. & Nguyet, N. T. M. (2024). Study on the possibility of using coconut fiber waste as raw material in particle board production. Journal of Forestry Science and Technology, 13(3), 125–134. https://doi.org/10.55250/Jo.vnuf.13.3.2024.125-134
Marta, P., Auriga, R., Kristak, L., & Antov, P. (2022). Physical and mechanical properties of particleboard produced with addition of walnut (Juglans Regia L.) wood residues. Materials, 15(4), 1280. https://doi.org/10.3390/ma15041280
Mitchual, S. J. & Mensah, P. (2020). Characterization of particleboard produced from residues of plant ainpseudostem, Cocoa Pod and stem and ceiba. Materials Sciences and Applications, 11(12), 817–836.https://doi.org/10.4236/msa.2020.1112054
Nurul, M., Mohammad, A., & Julkapli, N. M. (2019). Dimensional stability of natural fiber-based and hybrid composites. Mechanical and Physical Testing of Biocomposites. Fibre-Reinforced Composites and Hybrid Composites (pp. 61–79). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102292-4.00004-7
Reinprecht, L. (2020). Particleboards from Recycled Wood. Forests, 11(11), 1166. https://doi.org/10.3390/f111111661–1
Shulga, G., Rizhikovs, J., Neiberte, B., Verovkins, A., Vitolina, S., Betkers, T., & Makars, R. (2023). Processing and Properties of Wood-Plastic Composite Containing Alkali-Treated Birch Wood Shavings and Bioadditive Obtained by Biorefinery of Birch Bark. Forests, 14, 1906. https://doi.org/10.3390/f14091906
Trinh, N. T., Hang, N. T., & Ngoc, N. B. (2023). Effect of pressing mode parameters on some physical and mechanical properties of plywood using cashew nut shell oil adhesive. Vietnam Journal of Forest Science, 5, 136–144.
Yimer, Y. Z., Gualu, A. G., Amede, E. A., & Hailemariam, L. M. (2023). Experimental investigation on flexural strength enhancement of eucalyptus based bamboo composite deck board. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2188688
Zhang, M., Biesold, G. M., Choi, W., Yu, J., Deng, Y., Silvestre, C., & Lin, Z. (2022). Recent advances in polymers and polymer composites for food packaging. Mater. Today, 53, 134–161.
Zhang, Y., He, Y., Yu, J., Lu, Y., Zhang, X., & Fang, L. (2023). Fabrication and Characterization of EVA Resins as Adhesives in Plywood. Polymers, 15(8), 1834.
https://doi.org/10.3390/polym15081834
Spear, M. J., Eder, A., & Carus, M. (2015). Wood polymer composites. In Ansell, M.P., (Ed.), Wood Composites. Woodhead Publishing Ltd.: Cambridge, UK, pp. 195–249.