1,3,4-Oxadiazole derivatives as potent antifungal agents: Synthesis, biological evaluation and an in silico study
Main Article Content
Abstract
Ten 1,3,4-oxadiazole derivatives were prepared and evaluated for their anti-fungal activities. The results showed that compounds 4a, 7a, and 7f displayed activity against F. oxysporum. Molecular docking study indicated that compounds 4a, 7a, and 7f exhibited affinity towards F. oxysporum’s β-tubulin by showing low binding energies as well as interactions with the key amino acids in the binding sites of the receptor.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Borrego-Muñoz, P., Becerra, L. D., Ospina, F., Coy-Barrera, E., & Quiroga, D. (2022). Synthesis (Z) vs (E) Selectivity, Antifungal Activity against Fusarium oxysporum, and Structure-Based Virtual Screening of Novel Schiff Bases Derived from l-Tryptophan. ACS omega, 7(28), 24714-24726.
Bordei Telehoiu, A. T., Nuță, D. C., Căproiu, M. T., Dumitrascu, F., Zarafu, I., Ioniță, P., Limban, C. (2020). Design, synthesis and in vitro characterization of novel antimicrobial agents based on 6-chloro-9h-carbazol derivatives and 1,3,4-oxadiazole scaffolds. Molecules, 25(2), 266.
Gan, X., Hu, D., Chen, Z., Wang, Y., & Song, B. (2017). Synthesis and antiviral evaluation of novel
1,3,4-oxadiazole/thiadiazole-chalcone conjugates.
Bioorganic & medicinal chemistry letters, 27(18), 4298-4301.
Gisi, U., & Sierotzki, H. (2008). Fungicide modes of action and resistance in downy mildews. Eur. J. Plant Pathol, 122, 157−167.
Li, Z., Ma, L., Wu, C., Meng, T., Ma, L., Zheng, W., ... & Shen, J. (2019). The Structure of MT189-Tubulin Complex Provides Insights into Drug Design. Letters in Drug Design and Discovery, 16(9), 1069-1073.
MacLean, D. E., Lobo, J. M., Coles, K., Harding, M. W., May, W. E., Peng, G., Turkington, T. K., & Kutcher, H. R. (2018). Fungicide application at anthesis of wheat provides effective control of leaf spotting diseases in western Canada. Crop Protect, 112, 343− 349.
Quy, N. P., Hue, B. T. B., Do, K. M., Quy, H. T. K., De, T. Q., Phuong, T. T. B., ... & Morita, H. (2022). Design, Synthesis and Cytotoxicity Evalufation of Substituted Benzimidazole Conjugated
1,3,4-Oxadiazoles. Chemical and Pharmaceutical Bulletin, 70(6), 448-453.
Sanzani, S. M., Li Destri Nicosia, M. G., Faedda, R., Cacciola, S. O., & Schena, L. (2014). Use of quantitative PCR detection methods to study biocontrol agents and phytopathogenic fungi and oomycetes in environmental samples. J. Phytopathol, 162, 1−13.
Somani, R. R., & Bhanushali, U. V. (2011). Synthesis and evaluation of antiinflammatory, analgesic and ulcerogenic potential of NSAIDs bearing
1,3,4-oxadiazole scaffold. Indian Journal of Pharmaceutical Sciences, 73(6), 634.
Song, Z. L., Zhu, Y., Liu, J. R., Guo, S. K., Gu, Y. C., Han, X., Zhang, M. Z. (2021). Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety. Molecular Diversity, 25(1), 205-221.
Xuan, T. D., Elzaawely, A. A., Fukuta, M., & Tawata, S. (2006). Herbicidal and fungicidal activities of lactones in kava (piper methysticum). J. Agric. Food Chem, 54, 720−725.
Yamamoto, I., Kyomura, N., & Takahashi, Y. (1993). Negatively correlated cross resistance: Combinations of N‐methylcarbamate with N‐propylcarbamate or oxadiazolone for green rice leafhopper. Archives of insect biochemistry and physiology, 22(1‐2), 277-288.
Zhang, M., Qian, S. S., Liu, J. Y., Xiao, Y., Lu, A. M., Zhu, H. L., Wang, J. X., & Ye, Y. H. (2014). Design, synthesis, antifungal, and antioxidant activities of
(E)-6-((2-phenylhydrazono) methyl) quinoxaline derivatives. J. Agric. Food Chem., 62, 9637−9643.
Zhang, X., Zhang, P., Perez-Rodriguez, V., Souders II, C. L., & Martyniuk, C. J. (2020). Assessing the toxicity of the benzamide fungicide zoxamide in zebrafish (Danio rerio): Towards an adverse outcome pathway for beta-tubulin inhibitors. Environmental Toxicology and Pharmacology, 78, 103405.