Development of electrospun chitosan/polyvinyl alcohol membranes with antibacterial properties for enhanced open wound healing
Main Article Content
Abstract
This work focuses on using the electrospinning process to fabricate a microfiber membrane for wound healing by combination of chitosan (CS) and polyvinyl alcohol (PVA). The impacts of several parameters on fiber morphology and antibacterial capabilities, such as PVA concentration, CS/PVA ratio, applied voltage, injection distance, and solution injection speed, were investigated. The ideal parameters for the electrospinning process were identified as follows: PVA concentration of 15%, CS/PVA ratio of 3/7, collecting distance of 10 cm, voltage of 11 kV, and flow rate of 0.085 mL/h. Scanning electron microscopy verified the fiber structure was homogeneous and particle-free, with an average diameter of 457 ± 111 nm. The CS/PVA microfiber membrane demonstrated strong antibacterial action against E. coli and L. monocytogenes strains. After 12 days, in-vivo tests demonstrated that the wound-healing capacity of the CS/PVA microfiber membrane was quicker than that of a self-healed wound sample. These results demonstrate the effective creation of CS/PVA microfibers for wound healing applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning approaches toward scaffold engineering—A brief overview. Artificial Organs, 30, 785-792.
https://doi.org/10.1111/j.1525-1594.2006.00301.x
Chen, J., Han, S., Huang, M., Li, J., Zhou, M., & He, J. (2022). Green crosslinked nanofibers membrane based on CS/PVA combined with polybasic organic acid for tympanic membrane repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(4), 291-301. https://doi.org/10.1080/00914037.2020.1825084
Dhurai, B., Saraswathy, N., Maheswaran, R., Sethupathi, P., Vanitha, P., Vigneshwaran, S., & Rameshbabu, V. (2013). Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Frontiers of Materials Science, 7, 350-361.
https://doi.org/10.1007/s11706-013-0222-8
El-Tahlawy, K. F., El-Bendary, M. A., Elhendawy, A. G., & Hudson, S. M. (2005). The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate polymers, 60, 421-430. https://doi.org/10.1016/j.carbpol.2005.02.019
Esser, V. M. & Elefson, D. E. (1970). Experiences with the Kirby-Bauer method of antibiotic susceptibility testing. American Journal of Clinical Pathology, 54(2), 193-198.
https://doi.org/10.1093/ajcp/54.2.193
Fan, J. P., Luo, J. J., Zhang, X. H., Zhen, B., Dong, C. Y., Li, Y. C., ... & Chen, H. P. (2019). A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chemical Engineering Journal, 378, 122232. https://doi.org/10.1016/j.cej.2019.122232
Gaaz, T. S., Sulong, A. B., Akhtar, M. N., Kadhum, A. A. H., Mohamad, A. B., & Al-Amiery, A. A. (2015). Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules, 20, 22833-22847. https://doi.org/10.3390/molecules201219884
Geng, X., Kwon, O.-H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26, 5427-5432. https://doi.org/10.1016/j.biomaterials.2005.01.066
Giménez-Arnau, A. (2016). Standards for the protection of skin barrier function. Skin Barrier Function, 49, 123-134.
https://doi.org/10.1159/000441588
Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids, 13, 2201-2220.
https://doi.org/10.1063/1.1383791
Homayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77, 656-661. https://doi.org/10.1016/j.carbpol.2009.02.008
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
Iqbal, H., Khan, B. A., Khan, Z. U., Razzaq, A., Khan, N. U., Menaa, B., & Menaa, F. (2020). Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly (vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. International Journal of Biological Macromolecules, 144, 921-931. https://doi.org/10.1016/j.ijbiomac.2019.09.169
Kang, Y. O., Yoon, I. S., Lee, S. Y., Kim, D. D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan‐coated poly (vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92, 568-576. https://doi.org/10.1002/jbm.b.31554
Kharaghani, D., Khan, M. Q., Tamada, Y., Ogasawara, H., Inoue, Y., Saito, Y., ... & Kim, I. S. (2018). Fabrication of electrospun antibacterial PVA/Cs nanofibers loaded with CuNPs and AgNPs by an in-situ method. Polymer Testing, 72, 315-321. https://doi.org/10.1016/j.polymertesting.2018.10.029
Lemma, S. M., Bossard, F., & Rinaudo, M. (2016). Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly (ethylene oxide). International Journal of Molecular Sciences, 17(11), 1790.
https://doi.org/10.3390/ijms17111790
Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., Zhao, D., & Lu, L. (2013). Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: a preclinical study. International Journal of Nanomedicine, 8, 4131-4145. https://doi.org/10.2147/IJN.S51679
Lim, S. H. (2003). Synthesis of a fiber-reactive chitosan derivative and its application to cotton fabric as an antimicrobial finish and a dyeing-improving agent (Dissertation). North Carolina State University.
Lim, S.-H. & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate research, 339, 313-319. https://doi.org/10.1021/ma5016616
Luo, C. & Edirisinghe, M. (2014). Core-liquid-induced transition from coaxial electrospray to electrospinning of low-viscosity poly (lactide-co-glycolide) sheath solution. Macromolecules, 47, 7930-7938.
https://doi.org/10.1021/ma5016616
Lv, H., Zhao, M., Li, Y., Li, K., Chen, S., Zhao, W., ... & Han, Y. (2022). Electrospun chitosan–polyvinyl alcohol nanofiber dressings loaded with bioactive ursolic acid promoting diabetic wound healing. Nanomaterials, 12(17), 2933. https://doi.org/10.3390/nano12172933
Mirhaj, M., Labbaf, S., Tavakoli, M., & Seifalian, A. M. (2022). Emerging treatment strategies in wound care. International Wound Journal, 19(7), 1934-1954.
https://doi.org/10.1111/iwj.13786
Nathan, K. G., Genasan, K., & Kamarul, T. (2023). Polyvinyl alcohol-chitosan scaffold for tissue engineering and regenerative medicine application: a review. Marine Drugs, 21(5), 304. https://doi.org/10.3390/md21050304.
Pereira, R. F., & Bartolo, P. J. (2016). Traditional therapies for skin wound healing. Advances in Wound Care, 5(5), 208-229. https://doi.org/10.1089%2Fwound.2013.0506
Reneker, D. H. & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7, 216. https://doi.org/10.1088/0957-4484/7/3/009
Sajomsang, W. (2010). Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review. Carbohydrate Polymers, 80(3), 631-647. https://doi.org/10.1016/j.carbpol.2009.12.037
SalehHudin, H. S., Mohamad, E. N., Afifi, A. M., Mahadi, W. N. L. W. (2023). Simulation and experimental study of parameters in multiple-nozzle electrospinning: Effects of voltage and nozzle configuration on the electric field and electrospun jet attributes. Journal of Manufacturing Processes, 85, 544-555. https://doi.org/10.1016/j.jmapro.2022.11.051
Singh, S., Young, A., & McNaught, C. E. (2017). The physiology of wound healing. Surgery (Oxford), 35(9), 473-477. https://doi.org/10.1016/j.mpsur.2017.06.004
Shekarforoush, S. S., Basiri, S., Ebrahimnejad, H., & Hosseinzadeh, S. (2015). Effect of chitosan on spoilage bacteria, Escherichia coli and Listeria monocytogenes in cured chicken meat. International Journal of Biological Macromolecules, 76, 303-309. https://doi.org/10.1016/j.ijbiomac.2015.02.033
Shin, Y., Hohman, M., Brenner, M. P., & Rutledge, G. (2001). Electrospinning: A whipping fluid jet generates submicron polymer fibers. Applied Physics Letters, 78, 1149-1151. https://doi.org/10.1063/1.1345798
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96, 557-569.
https://doi.org/10.1002/app.21481
Thuy, N. T. T., Ghosh, C., Hwang, S.-G., Lam, D. T., Park, J. S. (2013). Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. Journal of Material Science, 48, 7125-7133. https://doi.org/10.1007/s10853-013-7527-y
Viana, V. R., Ferreira, W. H., Azero, E. G., Dias, M. L., & Andrade, C. T. (2020). Optimization of the electrospinning conditions by box-behnken design to prepare poly (vinyl alcohol)/chitosan crosslinked nanofibers. Journal of Materials Science and Chemical Engineering, 8(4), 13-31. https://doi.org/10.4236/msce.2020.84002
Wei, Y., Zhang, X., Song, Y., Han, B., Hu, X., Wang, X., ... & Deng, X. (2011). Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomedical Materials, 6(5), 055008. https://doi.org/10.1088/17486041/6/5/055008
Yamamoto, K., Toya, S., Sabidi, S., Hoshiko, Y., & Maeda, T. (2021). Diluted Luria-Bertani medium vs. sewage sludge as growth media: comparison of community structure and diversity in the culturable bacteria. Applied Microbiology and Biotechnology, 105, 3787-3798.
https://doi.org/10.1007/s00253-021-11248-4