Tran Thi Bich Quyen * , Luong Huynh Vu Thanh , Doan Van Hong Thien , Nguyen Thi Xuan Chi , Nguyen Thi Diem Nhi and Bui Le Anh Tuan

* Correspondence: Tran Thi Bich Quyen (email:

Main Article Content


A simple and effective approach has been developed to synthesize palladium nanosheets that were successfully employed by reducing the Pd salt precursor in N,N-dimethylformamide (DMF), cetyltrimethylammonium bromide (CTAB), citric acid and using variuos reducing agents of CO gas and tungsten hexacarbonyl (W(CO)6). It indicates to be novel method for the synthesis providing a cost effective and an efficient route for the Pd nanosheets’ synthesis. The prepared Pd nansheets have been characterized by UV-vis, TEM and XRD. Result showed those Pd nanosheets have been obtained with the average edge length of ~20-25 nm (using CO gas) and around ~20 nm (using W(CO)6). Thus, the method using W(CO)6 as a reducing agent could be a competitive alternative to the approach used CO gas for the synthesis of Pd nanosheets. Since, it has a potential to use for applications in photothermal therapy, biosensor, catalyst,… with highly plasmonic and catalytic properties in the current and in future. 
Keywords: Catalytic, characterization, CO gas, palladium nanosheets (Pd NSs), plasmonic, tungsten hexacarbonyl (W(CO)6)

Article Details


Astruc, D., 2007. Palladium Nanoparticles as Efficient Green Homogeneous and Heterogeneous Carbon−Carbon Coupling Precatalysts: A Unifying View. Inorganic Chemistry, 46(6): 1884-1894.

Bankar, A., Joshi, B., Kumar, A. R. and Zinjarde, S., 2010. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters, 64(18): 1951-1953.

Berhault, G., Bisson, L., Thomazeau, C., Verdon, C. et al., 2007. Preparation of nanostructured Pd particles using a seeding synthesis approach—Application to the selective hydrogenation of buta-1,3-diene. Applied Catalysis A: General, 327(1): 32-43.

Bouarab, S., Demangeat, C., Mokrani, A. and Dreyssé, H., 1990. Onset of magnetism in palladium slabs. Physics Letters A, 151(1): 103-105.

Duan, H., Yan, N., Yu, R., Chang, C.-R. et al., 2014. Ultrathin rhodium nanosheets. Nature Communications, 5(1): 1-8.

Franzén, R., 2000. The Suzuki, the Heck, and the Stille reaction - three versatile methods for the introduction of new CC bonds on solid support. Canadian Journal of Chemistry, 78(7): 957-962.

Hong, J. W., Kim, Y., Wi, D. H., Lee, S. et al., 2016. Ultrathin Free-Standing Ternary-Alloy Nanosheets. Angewandte Chemie International Edition, 128(8): 2803-2808.

Huang, X., Tang, S., Mu, X., Dai, Y. et al., 2010. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 6(2011): 28-32.

Huang, X., Li, S., Huang, Y., Wu, S. et al., 2011. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2(1): 2921-2916.

Huang, X., Zeng, Z. and Zhang, H., 2013. Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 42(5): 1934-1946.

Hübert, T., Boon-Brett, L., Black, G. and Banach, U., 2011. Hydrogen sensors – A review. Sensors and Actuators B: Chemical, 157(2): 329-352.

Kishore, S., Nelson, J. A., Adair, J.H. and Eklund, P. C., 2005. Hydrogen Storage in Spherical and Platelet Palladium Nanoparticles. Journal of Alloys and Compounds, 389(1): 234-242.

Kooij, E. S., W. Ahmed, H. J. W. Zandvliet and B. Poelsema, 2011. Localized Plasmons in Noble Metal Nanospheroids. The Journal of Physical Chemistry C, 115(21): 10321-10332.Langhammer, C., I. Zorić, B. Kasemo and B. M. Clemens, 2007. Hydrogen Storage in Pd Nanodisks Characterized with a Novel Nanoplasmonic Sensing Scheme. Nano Letters, 7(100): 3122-3127.

Li, Y., Hong, X. M. F. A. U. C., Collard, D. M. F. A. U. E.-S. and El-Sayed, M. A., 2000. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Organic Letters, 2(15): 2385-2388.

Li, Y., Lu, G., Wu, X. and Shi, G., 2006. Electrochemical Fabrication of Two-Dimensional Palladium Nanostructures as Substrates for Surface Enhanced Raman Scattering. The Journal of Physical Chemistry B, 110(48): 24585-24592.

Li, Y., Yan, Y., Li, Y., Zhang, H. et al., 2015. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm, 17(8): 1833-1838.Perez-Alonso, F. J., McCarthy Dn Fau - Nierhoff, A., Nierhoff A Fau - Hernandez-Fernandez, P., Hernandez-Fernandez P Fau - Strebel, C. et al., 2012. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angewandte Chemie International Edition, 51(19): 4641-4643.

Mendoza, D., Morales, F., Escudero, R., and Walter, J., 1999. Magnetization studies in quasi two-dimensional palladium nanoparticles encapsulated in a graphite host. Journal of Physics Condensed Matter, 11(28): L317-L322.

Rao, C. N. R. M., A.; Cheetham, A. K, Eds., 2004. The Chemistry of Nanomaterials: Synthesis, properties and applications. Wiley-VCH Verlag GmbH & Co. KGaA, 1: 1-11.

Redjala, T., Remita, H., Apostolescu, G., Mostafavi, M., Thomazeau, C., and Uzio, D., 2006. Bimetallic Au-Pd and Ag-Pd Clusters Synthesised by $gamma $ or Electron Beam Radiolysis and Study of the Reactivity/Structure Relationships in the Selective Hydrogenation of Buta-1,3-Diene. Oil Gas Science and Technology- Reviews IFP, 61(6): 789-797.

Reetz, M. T. and Westermann, E., 2000. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. Angewandte Chemie International Edition, 39(1): 165-168.

Roucoux, A., Schulz, J., and Patin, H., 2002. Reduced transition metal colloids: a novel family of reusable catalysts? Chemical Reviews, 102(10): 3757-3778

Saleem, F., Zhang, Z., Xu, B., Xu, X. et al., 2013. Ultrathin Pt–Cu Nanosheets and Nanocones. Journal of the American Chemical Society, 135(49): 18304-18307.

Siddiqi, K. S. and Husen, A., 2016. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles. Nanoscale Research Letters, 11(1): 482-491.

Son, S. U., Jang Y., Park, J., et al., 2004. Designed synthesis of atom-economical pd/ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. Journal of the American Chemical Society, 126(16): 5026-5027.

Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., 2000. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287(5460): 1989-1992.

Suzuki, M., Suzuki, I. S., and Walter, J., 2000. Magnetic properties of palladium-graphite multilayers. Physical Review B, 62(21): 14171-14180.

Tobiška, P., Hugon, O., Trouillet, A., and Gagnaire, H., 2001. An integrated optic hydrogen sensor based on SPR on palladium. Sensors and Actuator B: Chemical, 74(1-3): 168-172.

Xiong, Y., Wiley, B., Chen, J., Li, Z. Y., Yin, Y., and Xia, Y., 2005. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angewandte Chemie International Edition, 44(48): 7913-7917.

Xiong, Y., McLellan, J. M., Chen, J., Yin, Y., Li, Z. Y., and Xia, Y., 2005. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 127(48): 17118-17127.

Xu, C. W., Wang, H., Shen, P. K. and Jiang, S. P., 2007. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells. Advanced Materials, 19(23): 4256-4259.

Yang, X., Li, Q., Wang, H., Huang, J. et al., 2010. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. Journal of Nanoparticle Research, 12(5): 1589-1598.

Yin, X., Liu, X., Pan, Y.T., Walsh, K. A. et al., 2014. Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets. Nano Letters, 14(12): 7188-7194.

Most read articles by the same author(s)