Synthesis of cellulose nanofiber from Nypa fruticans shell collected from Can Tho City, Viet Nam
Main Article Content
Abstract
In this study, cellulose nanofiber (CNF) was synthesized from Nypa fruticans shells as raw material in Can Tho City. CNF was successfully produced via several steps. Firstly, raw material was treated with a mixture of Peroxyformic acid solution, then with an alkaline solution and bleached. Finally, it was hydrolyzed with 5% oxalic acid combined with hydrothermal and used ultrasonic waves with a high number of 40 kHz. The obtained materials after each step were surveyed and evaluated through advanced analysis methods, such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results indicate that the CNF material had high purity, high crystallinity, and an average size of about 15.74 nm. The results of this study demonstrate the potential of Nypa fruticans shells as a low-cost and environmentally friendly raw material for CNF synthesis.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
An, V. N., Nhan T. H. C., Tap D. T., Van T. T. T., Viet P. V., & Hieu L. V. (2020). Extraction of high crystalline nanocellulose from renewable sources of Vietnamese agricultural wastes. Journal of Polymers and the Environment, 28(6), 1465-1474. https://link.springer.com/article/10.1007/s10924-020-01695-x
Fahma, F., Febiyanti, I., Lisdayana, N., Arnata, I. W., & Sartika, D. (2021). Nanocellulose as a new sustainable material for various applications: A review. Archives of Materials Science and Engineering, 109(2), 49-64. http://dx.doi.org/10.5604/01.3001.0015.2624
Hai, L. V., Zhai, L., Kim, H. C., Panicker, P. S., Pham, D. H., & Kim, J. (2020). Chitosan Nanofiber and Cellulose Nanofiber Blended Composite Applicable for Active Food Packaging. Nanomaterials (Basel, Switzerland), 10(9), 1752. http://dx.doi.org/10.3390/nano10091752
Kenvin, H. D., & Siti, A. A. (2000). Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodiversity & Conservation, 9, 393-402. http://dx.doi.org/10.1515/9783110264067.273
Khalil, H. A., Davoudpour, Y., Saurabh, K. S., Hossain, M. S., Adnan, A. S., Dungani, R., Paridah, M., Sarker, M. Z. I., Fazita, M. R. N., Syakir, M. I., & Haafiz, M. K. M. (2016). A review on nano cellulosic fibers as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews, 64, 823-836. http://dx.doi.org/10.1016/j.rser.2016.06.072
Kim, H. G., Lee, U. S., Kwac, L. K., Lee, S. O., Kim, Y. S., & Shin, H. K. (2019). Electron beam irradiation isolates cellulose nanofiber from Korea “Tall Goldenrod” invasive alien plant. Nanomaterials (Basel, Switzerland), 9(10), 1358. https://doi.org/10.3390/nano9101358
Kruse, K.M., & Frühwald, A. (2001). Properties of Nipa-and Coconut fibers and production and properties of particle-and MDF-boards made from nipa and coconut. Johann Heinrich von Thünen-Institut (vTI), Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei.
Lawrence, H. S., & Dennis, M. H. (1988). Use and management of Nipa palm (Nypa fruticans, Arecaceae): A review. Economic Botany, 42, 206-213.
https://doi.org/10.1007/bf02858921
Liu, D., Zhong, T., Chang, P. R., Li, K., & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 101(7), 2529-2536. http://dx.doi.org/10.1016/j.biortech.2009.11.058
Ma, Y., Chai, X., Bao, H., Huang, Y., & Dong, W. (2023). Study on nanocellulose isolated from waste chili stems processing as dietary fiber in biscuits. Plos one, 18(1). http://dx.doi.org/10.1371/journal.pone.0281142
Park, NM., Choi, S., Oh, J. E., & Hwang, D. Y. (2019). Facile extraction of cellulose nanocrystals. Carbohydrate Polymers, 223, 114115. http://dx.doi.org/10.1039/C5GC02576A
Prado, K. S., & Spinacé, M. A. S. (2019). Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International journal of biological macromolecules, 122, 410-416. http://dx.doi.org/10.1016/j.ijbiomac.2018.10.187
Pramila, T., & Shiro, S. (2011). Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products, 34(3), 1423-1428. http://dx.doi.org/10.1016/j.indcrop.2011.04.020
Rhim, JW., Reddy, J. P., & Luo, X. (2015). Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose, 22(1), 407-420. http://dx.doi.org/10.1007/s10570-014-0517-7
Sandeep, A. S., Aditya, S. R., Swarnim, B. S., & Alain, D. (2021). Nanocellulose in food packaging: A review. Carbohydrate Polymers, 255, 1-17. http://dx.doi.org/10.1016/j.carbpol.2020.117479
Trilokesh, C., & Uppuluri, K. B. (2019). Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep, 9. https://www.nature.com/articles/s41598-019-53412-x
United States Department of Agriculture. (2024). Nypa fruticans Wurmb.
https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=25449
Wang, Z., Yao, Z., Zhou, J., He, M., Jiang, Q., Li, S., Ma, Y., Liu, M., & Luo, S. (2019). Isolation and characterization of cellulose nanocrystals from pueraria root residue. International journal of biological macromolecules, 129, 1081–1089. http://dx.doi.org/10.1080/15440478.2020.1821292
Wijana, S., Setyawan, H. Y., Wan, Z., Zhu, M., Pranowo, D., Dewi, I. A., & Nareswari, M. P. (2023). The potential of Nypa Frutican as an energy source in Indonesia: A Review. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE), 6(1), 88-96. http://dx.doi.org/10.21776/ub.afssaae.2023.006.01.8
Xing, H., Fei, Y., Cheng, J., Wang, C., Zhang, J., Niu, C., Fu, Q., Cheng, J., & Lu, L. (2022). Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel. Molecules (Basel, Switzerland), 27(19), 6507. http://dx.doi.org/10.3390/molecules27196507
Yadav, H. M., Park, J. D., Kang, H. C., Kim, J., & Lee, J. J. (2021). Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors. Nanomaterials (Basel, Switzerland), 11(2), 395. http://dx.doi.org/10.3390/nano11020395
Zhang, C., Jiang, Q., Liu, A., Wu, K., Yang, Y., Lu, J., Cheng, Y., & Wang, H. (2020). The bead-like Li3V2(PO4)3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 237(3-4), 116-134.
http://dx.doi.org/10.1016/j.carbpol.2020.116134
Zhao, G., Du, J., Chen, W., Pan, M., & Chen, D. (2019). Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose, 26, 8625-8643. https://link.springer.com/article/10.1007/s10570-019-02683-8