Incorporation of amine functional group on surface of hydroxyapatite prepared fromstriped catfish (Pagasianodon hypophthalmus) bone
Main Article Content
Abstract
This study was conducted to incorporate amine functional groups on the surface of hydroxyapatite to enhance its potential application in biomedical materials. Hydroxyapatite particles (HA) were synthesized from striped catfish (Pagasianodon hypophthalmus) bone and surface modified by grafting with (3-aminopropyl)triethoxysilane (APTES). Important factors affected grafting efficiency such as concentration of APTES, water content, reaction temperature and reaction time were studied. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) were used to confirm the grafting reaction on HA surfaces. Grafting efficiency was evaluated based on intensity of characteristic absorption peaks of APTES. The experimental results showed that amine functional groups were successfully introduced on HA surface at optimal condition of 0.2 M APTES, 0.75 wt.% water content, at 60°C and 12-hour reaction time.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Balasundaram, G., Sato, M., & Webster, T. J. (2006). Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials, 27(14), 2798-2805.
Barakat, N. A., Khil, M. S., Omran, A., Sheikh, F. A., & Kim, H. Y. (2009). Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of materials processing technology, 209(7), 3408-3415.
Boerio, F., Armogan, L., & Cheng, S. (1980). The structure of γ-aminopropyltriethoxysilane films on iron mirrors. Journal of Colloid Interface Science, 73(2), 416-424.
Chang, M. C., & Tanaka, J. (2002). FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23(24), 4811-4818.
Culler, S., Ishida, H., & Koenig, J. (1985). Structure of silane coupling agents adsorbed on silicon powder. Journal of colloid and interface science, 106(2), 334-346.
Da Silva, O. G., Da Silva Filho, E. C., Da Fonseca, M. G., Arakaki, L. N., & Airoldi, C. (2006). Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J Colloid Interface Sci, 302(2), 485-491.
Damia, C., Sarda, S., Deydier, E., & Sharrock, P. (2006). Study of two hydroxyapatite/poly (alkoxysilane) implant coatings. Surface Coatings Technology, 201(6), 3008-3015.
Durrieu, M. C., Pallu, S., Guillemot, F., Bareille, R., Amedee, J., Baquey, C. H., . . . & Dard, M. (2004). Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med, 15(7), 779-786.
Engelhardt, H., & Orth, P. (1987). Alkoxy silanes for the preparation of silica based stationary phases with bonded polar functional groups. Journal of liquid chromatography, 10(8-9), 1999-2022.
Goonasekera, C. S., Jack, K. S., Cooper-White, J. J., & Grøndahl, L. (2013). Attachment of poly (acrylic acid) to 3-aminopropyltriethoxysilane surface-modified hydroxyapatite. Journal of Materials Chemistry B, 1(42), 5842-5852.
Haixin Zhao, Wenjun Dong, Yingying Zheng, Aiping Liu, Juming Yao, Chaorong Li, . . . Shi, Z. (2011). The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds. Biomaterials, 32(25), 5837-5846.
Ho, Q.-P., Tao, T.-D., Huynh, L.-H., & Wang, M.-J. (2020). Biocomposite scaffold preparation from hydroxyapatite extracted from waste bovine bone. Green Processing and Synthesis, 9(1), 37-47.
Howarter, J. A., & Youngblood, J. P. (2006). Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 22(26), 11142-11147. doi:10.1021/la061240g
Kim, H. W., Lee, H. H., & Knowles, J. (2006). Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. Journal of Biomedical Materials research. Part A, 79(3), 643-649.
Liu, H., Chen, F., Xi, P., Chen, B., Huang, L., Cheng, J., . . . Zeng, Z. (2011). Biocompatible fluorescent hydroxyapatite: synthesis and live cell imaging applications. The Journal of Physical Chemistry C, 115(38), 18538-18544.
Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., & Skepper, J. N. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30(19), 3307-3317.
Pasternack, R. M., Rivillon Amy, S., & Chabal, Y. J. (2008). Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir, 24(22), 12963-12971.
Rivera-Muñoz, & M, E. (2011). Hydroxyapatite-based materials: synthesis and characterization: IntechOpen.
Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta biomaterialia, 9(8), 7591-7621.
Santos, M. H., Oliveira, M. d., Souza, L. P. d. F., Mansur, H. S., & Vasconcelos, W. L. (2004). Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research, 7(4), 625-630.
Song, Y.-Y., Hildebrand, H., & Schmuki, P. (2010). Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2. Surface Science, 604(3-4), 346-353.
Wang, S., Wen, S., Shen, M., Guo, R., Cao, X., Wang, J., & Shi, X. (2011). Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. International journal of nanomedicine, 6, 3449.
Ylinen, P. (2006). Applications of coralline hydroxyapatite with bioabsorbable containment and reinforcement as bone graft substitute. University of Helsinki, Helsinki, Finland.
Zhang, F., & Srinivasan, M. (2004). Self-assembled molecular films of aminosilanes and their immobilization capacities. Langmuir, 20(6), 2309-2314.