Duong Thuy Yen * and Nguyen Thi Ngoc Tran

* Corresponding author (thuyyen@ctu.edu.vn)

Main Article Content

Abstract

Selective programs associated with domestication can improve fish production but also can have an impact on broodstock’s genetic diversity. In this study, the genetic diversity of original sources (G0) from wild and cultured bighead catfish populations, as well as the two successive generations (G1 and G2) subjected to selection experiments, was assessed. G0 wild adults were collected in Ca Mau conservation area and G0 cultured fish were from a hatchery in Can Tho. The G1 fish included pure crosses and crossbreeds of G0, while G2 was the offspring of the selected G1. Fin clips from 27 to 29 individuals of each fish group were randomly sampled for genetic analysis. The amplification results using six ISSR primers showed that the genetic diversity was relatively higher in G0 (effective number of alleles Ne from 1.43 to 1.49; heterozygosity He from 0.265 to 0.290) than in G1 (Ne = 1.32±0.04; He = 0.201±0.023) and G2 (Ne = 1.34±0.04; He = 0.216±0.023). Genetic differences increased between the original populations and the descending generations. To reduce the detrimental impacts of low genetic diversity in domesticated bighead catfish in the Mekong Delta, it is recommended that broodstock in later generations should be produced in a larger...

Keywords: Clarias, domestication, ISSR markers, genetic diversity, selection

Article Details

References

Allendorf, F. W., & Luikart, G. (2007). Conservation and the Genetics of Populations (1st ed.). Blackwell Publishing.

Çiftci, Y., & Okumuş, İ. (2002). Fish population genetics and applications of molecular markers to fisheries and aquaculture: I- Basic principles of fish population genetics. Turkish Journal of Fisheries and Aquatic Sciences, 2(2), 145–155. https://dergipark.org.tr/en/pub/trjfas-ayrildi/issue/13293/160660

Diyie, R. L., Agyarkwa, S. K., Armah, E., Amonoo, N. A., Owusu-Frimpong, I., & Osei-Atweneboana, M. Y. (2021). Genetic variations among different generations and cultured populations of Nile Tilapia (Oreochromis niloticus) in Ghana: Application of microsatellite markers. Aquaculture, 544(June), 737070. https://doi.org/10.1016/j.aquaculture.2021.737070

Duong, T. Y., Nguyen, P. T., Tieu, V. U., & Tran, D. D. (2018). Genetic diversity of kissing gourami (Helostoma temminckii) in the Mekong Delta. Can Tho University Journal of Science, 54(7B), 86–93. https://doi.org/10.22144/ctu.jvn.2018.144

Duong, T. Y., & Nguyen, T. V. (2019). Genetic diversity of Pangasius krempfi in the Mekong River estuaries. Can Tho University Journal of Science, 11(2), 81–88. https://doi.org/10.22144/ctu.jen.2019.027

Duong, T. Y., & Pham, T. T. N. (2015). Genetic diversity of square head climbing perch (Anabas testudineus) populations in Hau Giang province. The Journal of Agriculture and Development, 6, 94–100.

Duong, T. Y., & Scribner, K. T. (2018). Regional variation in genetic diversity between wild and cultured populations of bighead catfish (Clarias macrocephalus) in the Mekong Delta. Fisheries Research, 207, 118–125. https://doi.org/10.1016/j.fishres.2018.06.012

Fernandes-Matioli, F. M. C., Matioli, S. R., & Almeida-Toledo, L. E. (2000). Species diversity and geographic distribution of Gymnotus (Pisces: Gymnotiformes) by nuclear (GGAC)n microsatellite analysis. Genetics and Molecular Biology, 23 (4), 803-807. https://doi.org/10.1590/S1415-47572000000400016

Fisch, K. M., Ivy, J. A., Burton, R. S., & May, B. (2013). Evaluating the performance of captive breeding techniques for conservation hatcheries: a case study of the delta smelt captive breeding program. Journal of Heredity, 104(1), 92–104. https://doi.org/10.1093/JHERED/ESS084

Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350353(0), 117–129. https://doi.org/http://dx.doi.org/10.1016/j.aquaculture.2012.04.008

Janssen, K., Chavanne, H., Berentsen, P., & Komen, H. (2017). Impact of selective breeding on European aquaculture. Aquaculture, 472, 8–16. https://doi.org/10.1016/J.AQUACULTURE.2016.03.012

Koljonen, M. L., Tähtinen, J., Säisä, M., & Koskiniemi, J. (2002). Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture, 212(1–4), 69–92. https://doi.org/10.1016/S0044-8486(01)00808-0

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

Liu, Y. G. G., Chen, S. L. L., Li, J., & Li, B. F. F. (2006). Genetic diversity in three Japanese flounder (Paralichthys olivaceus) populations revealed by ISSR markers. Aquaculture, 255(1), 565–572. https://doi.org/10.1016/J.AQUACULTURE.2005.11.032

Liu, Z. J., & Cordes, J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1–4), 1–37. https://doi.org/10.1016/j.aquaculture.2004.05.027

Mashyaka, A., & Duong, T. Y. (2021). Genetic diversity analysis revealed possible long migration of black sharkminnow (Labeo chrysophekadion) along the Mekong river. Songklanakarin Journal of Science and Technology, 43(4), 955–960.

Nazia, A. K., Tam, B. M., Jamaluddin, J. A. F., & Mohd Nor, S. A. (2021). High genetic structure between natural populations of bighead catfish Clarias macrocephalus (Günther, 1864) from the Mekong Delta and Peninsular Malaysia. Fisheries Research, 241, 105993. https://doi.org/10.1016/J.FISHRES.2021.105993

Okumuú, Ø., & Çiftci, Y. (2003). Fish population genetics and molecular markers: II-Molecular markers and their applications in fisheries and aquaculture. Turkish Journal of Fisheries and Aquatic Sciences, 3(2003), 51–79. https://dergipark.org.tr/en/pub/trjfas-ayrildi/issue/13292/160651

Pazza, R., Kavalco, K. F., Prioli, S. M. A. P., Prioli, A. J., & Bertollo, L. A. C. (2007). Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae), Part 3: Analysis of the RAPD and ISSR molecular markers. Biochemical Systematics and Ecology, 35(12), 843–851. https://doi.org/10.1016/J.BSE.2007.03.018

Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Porta, J., Maria Porta, J., Cañavate, P., Martínez-Rodríguez, G., & Carmen Alvarez, M. (2007). Substantial loss of genetic variation in a single generation of Senegalese sole (Solea senegalensis) culture: Implications in the domestication process. Journal of Fish Biology, 71(SUPPL. B), 223–234. https://doi.org/10.1111/j.1095-8649.2007.01576.x

Saad, Y. M., Rashed, M. A., Atta, A. H., Ahmed, N. E. (2012). Genetic diversity among some tilapia species based on ISSR markers. Life Science Journal, 9(4), 4841–4846.

Saporito-Irwin, S. M., Geist, T., & Gutmann, D. H. (1997). Ammonium acetate protocol for the preparation of plasmid DNA suitable for mammalian cell transfections. BioTechniques, 23(3), 424–427. https://doi.org/10.2144/97233bm16

Sawasawa, W., & Duong, T. Y. (2020). Genetic diversity of endangered snakehead Channa lucius (Cuvier, 1831) in the Mekong Delta inferred from ISSR markers. Asian Fisheries Science, 33(3), 266–273. https://doi.org/10.33997/j.afs.2020.33.3.008

Senanan, W., Kapuscinski, A. R., Na-Nakorn, U., & Miller, L. M. (2004). Genetic impacts of hybrid catfish farming (Clarias macrocephalus x C. gariepinus) on native catfish populations in central Thailand. Aquaculture, 235(1–4), 167–184. https://doi.org/10.1016/j.aquaculture.2003.08.020

Sharma, S. K., Kumaria, S., Tandon, P., Rao, S. R. (2011). Single primer amplification reaction (SPAR) reveals inter- and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae). Gene, 483(1–2), 54–62. https://doi.org/10.1016/j.gene.2011.05.013

Shikano, T., Shimada, Y., & Suzuki, H. (2008). Comparison of genetic diversity at microsatellite loci and quantitative traits in hatchery populations of Japanese flounder Paralichthys olivaceus. Journal of Fish Biology, 72(2), 386–399. https://doi.org/10.1111/j.1095-8649.2007.01702.x

Tanhuanpää, P., Kalendar, R., Laurila, J., Schulman, A. H., Manninen, O., & Kiviharju, E. (2006). Generation of SNP markers for short straw in oat (Avena sativa L.). Genome, 49(3), 282–287. https://doi.org/10.1139/g05-100

Tave, D. (1993). Genetics for Fish Hatchery Managers (2nd ed.). Van Nostrand Reinhold New York.

Tave, D. (1999). Inbreeding and broodstock management. FAO fisheries technical paper 392.

Tessier, N., & Bernatchez L. (1999). Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L .). Molecular Ecology, 8(2), 169–179.

Tiwari, S. K., Karihaloo, J. L., Hameed, N., & Gaikwad, A. B. (2009). Molecular characterization of brinjal (Solanum melongena L) cultivars using RAPD and ISSR markers. Journal of Plant Biochemistry and Biotechnology, 18(2), 189–195. https://doi.org/10.1007/BF03263318

Yeh, F., Yang, R., & Boyle, T. (1999). Popgene version 1.3.1. Mircosoft Window-based Freeware for Population Genetic Ananlysis. University of Alberta and Centre for International Forestry Research. Edmonton, Alto, 1–29.

Yi, T. L., Guo, W. J., Liang, X. F., Yang, M., Lv, L. Y., Tian, C. X., Song, Y., Zhao, C., & Sun, J. (2015). Microsatellite analysis of genetic diversity and genetic structure in five consecutive breeding generations of mandarin fish Siniperca chuatsi (Basilewsky). Genetics and Molecular Research, 14(1), 2600–2607. https://doi.org/10.4238/2015.March.30.19

Most read articles by the same author(s)