Pham Minh Tien , Truong Thi Kim Yen , Truong Thi Kim Tho , Le Thanh Phu , Tran Thi Bich Quyen and Luong Huynh Vu Thanh *

* Corresponding author (lhvthanh@ctu.edu.vn)

Main Article Content

Abstract

In this study, activated carbon (AC) used as a high-efficiency and low-cost for ammonium ion (NH4+) adsorbent was synthesized, for the first time from durian peel by a one-step chemical activation process using phosphoric acid. The effects of pH, contact time, initial concentration, and adsorbent dose on the NH4+ adsorption in aqueous solution were investigated in detail. The as-synthesized AC was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller method (BET). As a result, AC from durian peel was successfully synthesized at a calcination temperature of 600oC, phosphoric acid concentration of 20% and an activation temperature of 50℃. The optimal condition for the NH4+ adsorption in aqueous solution was at pH 7.0, adsorption time of 60 min., initial concentration of 40 mg/L, with an adsorbent mass of 0.1 g. The adsorption kinetics and adsorption isotherm of NH4+ adsorption process showed that the adsorption process was fitted to pseudo-second-order kinetic model and Freundlich adsorption isotherm, indicating a physical and multilayer adsorption process. In general, this study provides an efficient, cost-effective adsorbent for NH4+ removal from aqueous solution.

Keywords: Adsorbent, adsorption, activated carbon, Ammonium ion, Durian peel

Article Details

References

Aworn, A. Thiravetyan, P., & Nakbanpote, W. (2008). Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores. Journal of Analytical and Applied Pyrolysis, 82(2), 279-285. https://doi.org/10.1016/j.jaap.2008.04.007

Balistrieri, L. S., & Murray, J. W. (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. American Journal of Science, 281(6), 788–806.

https://doi.org/10.2475/ajs.281.6.788

Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., & Zhang, H. (2022). Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combustion and Flame, 242, 112142. https://doi.org/10.1016/j.combustflame.2022.112142

Chen, W., Zhang, Y., Zhang, S., Lu, W., & Xu, H. (2020). Pyrolysis Behavior and Pore-Forming Mechanism During Reuse of Textile Waste Flax by Activation. Waste and Biomass Valorization, 11, 4259-4268. http://doi.org /10.1007/s12649-019-00770-2

Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in Colloid and Interface Science, 93(1-3), 135-224. https://doi.org/10.1016/s0001-8686(00)00082-8

Damayanti, A., Wulansarie, R., Bahlawan, Z. A. S., Suharta, Royana, M., Basuki, M. W. N. M., Nugroho, B., & Andri, A. L. (2023). Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel. ChemEngineering, 7(5), 75. https://doi.org/10.3390/chemengineering7050075

Dattilo, D., & Dietze, U. (2014). Efficient ozone, sulfate, and ammonium free resist stripping process, Photomask and Next-Generation Lithography Mask Technology XXI, SPIE, 9256, 21-28. https://doi.org/10.1117/12.2070808

Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations: Effect of pH and temperature. Journal of the Fisheries Board of Canada, 32(12), 2379-2383. https://doi.org/10.1139/f75-274

French, A.D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896.

https://doi.org/10.1007/s10570-013-0030-4.

Fu, P., Hu, S., Xiang, J., Sun, L., Li, P., Zhang, J. & Zheng, C. (2009). Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy & Fuels, 23(9), 4605-4611.

https://doi.org/10.1021/ef900268y

Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18, 393-415.

http://doi.org/10.1007/s10311-019-00955-0

Ismail, A., Sudrajat, H., & Jumbianti, D. (2010). Activated carbon from durian seed by H3PO4 activation: preparation and pore structure characterization. Indonesian Journal of Chemistry, 10(1), 36-40. https://doi.org/10.22146/ijc.21495

Lazim, Z. M., Hadibarata, T., Puteh, M. H. & Yusop, Z. (2015). Adsorption characteristics of bisphenol A onto low-cost modified phyto-waste material in aqueous solution. Water, Air, & Soil Pollution, 226, 1-11.

https://doi.org/10.1007/s11270-015-2318-5

Lim, W.C., Srinivasakannan, C., & Al Shoaibi, A. (2015). Cleaner production of porous carbon from palm shells through recovery and reuse of phosphoric acid. Journal of Cleaner Production, 102, 501-511. https://doi.org/10.1016/j.jclepro.2015.04.100

Liu, Y., Yao, X., Wang, Z., Li, H., Shen, X., Yao, Z. & Qian, F. (2019). Synthesis of activated carbon from citric acid residue by phosphoric acid activation for the removal of chemical oxygen demand from sugar-containing wastewater. Environmental Engineering Science, 36(6), 656-666. https://doi.org/10.1089/ees.2018.0506

Maguana, Y. E., Elhadiri, N., Benchanaa, M., & Chikri, R. (2020). Activated carbon for dyes removal: Modeling and understanding the adsorption process. Journal of Chemistry, 2020(1), 2096834. https://doi.org/10.1155/2020/2096834https://doi.org/10.1155/2020/2096834

Marañón, E., Ulmanu, M., Fernández, Y., Anger, I., & Castrillón, L. (2006). Removal of ammonium from aqueous solutions with volcanic tuff. Journal of Hazardous Materials, 137(3), 1402-1409. https://doi.org/10.1016/j.jhazmat.2006.03.069

Moradi, O. (2011). The removal of ions by functionalized carbon nanotube: equilibrium, isotherms and thermodynamic studies. Chemical and Biochemical Engineering Quarterly, 25(2), 229-240. https://hrcak.srce.hr/file/104106

Myers, A. L. (2002). Thermodynamics of adsorption in porous materials. AIChE journal, 48(1), 145-160. https://doi.org/10.1002/aic.690480115

Ortiz, L. R., Torres, E., Zalazar, D., Zhang, H., Rodriguez, R., & Mazza, G. (2020). Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renewable Energy, 155, 837-847. https://doi.org/10.1016/j.renene.2020.03.181

Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothudi, B. M., Kommula, V. P., Zhang, J., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydrate Polymers, 188, 85-91

https://doi.org/10.1016/j.carbpol.2018.01.110

Saleh, M. E., Mahmoud, A. H., & Rashad, M. (2013). Biochar usage as a cost-effective bio-sorbent for removing NH4-N from wastewater. In The international conference the Global Climate Change, Biodiversity and Sustainability: Challenges and Opportunities in Arab MENA region and EuroMed (pp. 15-18). Arab Academy for Science, Technology and Maritime Transport, Smithsonian Conservation Biology Institute, and the University of Prince Edward Island.

Selvarajoo, A., Lee, C. W., Oochit, D., & Almashjary, K. H. O. (2021). Bio-pellets from empty fruit bunch and durian rinds with cornstarch adhesive for potential renewable energy. Materials Science for Energy Technologies, 4, 242-248. https://doi.org/10.1016/j.mset.2021.06.008

Suhas, Carrott, P. J. M., & Carrott, M. M. L. R. (2007). Lignin–from natural adsorbent to activated carbon: a review. Bioresource Technology, 98(12), 2301-2312. https://doi.org/10.1016/j.biortech.2006.08.008

Tan, Y. L., Abdullah, A. Z., & Hameed, B. H. (2017). Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses. Bioresource Technology, 243, 85-92. https://doi.org/10.1016/j.biortech.2017.06.015

Tham, Y. J., Latif, P. A., Abdullah, A. M., Shamala-Devi, A., & Taufiq-Yap, Y. H. (2011). Performance of toluene removal by activated carbon derived from durian shell. Bioresource technology, 102(2), 724-728. https://doi.org/10.1016/j.biortech.2010.08.068

Thang, N. H., Khang, D. S., Hai, T. D., Nga, D. T., & Tuan, P. D. (2021). Methylene blue adsorption mechanism of activated carbon synthesized from cashew nut shells. RSC Advances, 11(43), 26563-26570. https://doi.org/10.1039/D1RA04672A

Tran, Q. T., Đo, T. H., Ha, X. L., Duong, T. T. A., Chu, M. N., Vu, V. N., Chau, H. D., Tran, T. K. N., & Song, P. (2022). Experimental design, equilibrium modeling and kinetic studies on the adsorption of methylene blue by adsorbent: activated carbon from durian shell waste. Materials, 15(23), 8566. https://doi.org/10.3390/ma15238566

Vu, T. M., Trinh, V. T., Doan, D. P., Van, H. T., Nguyen, T. V., Vigneswaran, S., & Ngo, H. H. (2017) Removing ammonium from water using modified corncob-biochar. Science of the Total Environment, 579, 612-619. https://doi.org/10.1016/j.scitotenv.2016.11.050

Wigmans, T. (1989). Industrial aspects of production and use of activated carbons. Carbon, 27(1), 13-22. https://doi.org/10.1016/0008-6223(89)90152-8

Yahaya, N. K. E. M., Abustan, I., Latiff, M. F. P. M., Bello, O. S., & Ahmad, M. A. (2011). Fixed-bed column study for Cu (II) removal from aqueous solutions using rice husk based activated carbon. International Journal of Engineering & Technology, 11(1), 248-252.

Zhu, Y., Kolar, P., Shah, S.B., Cheng, J. J., & Lim, P. K. (2016). Avocado seed-derived activated carbon for mitigation of aqueous ammonium. Industrial Crops and Products, 92(15), 34-41. https://doi.org/10.1016/j.indcrop.2016.07.016

Zhang, S., Zheng, M., Tang, Y., Zang, R., Zhang, X., Huang, X., ... & Pang, H. (2022). Understanding synthesis–structure–performance correlations of nano architectured activated carbons for electrochemical applications and carbon capture. Advanced Functional Materials, 32(40), 2204714

https://doi.org/10.3390/w13050608

Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., & Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Sciences, 63, 174-197. https://doi.org/10.1016/j.jes.2017.09.009

Karthikeyan, S., Sivakumar, P., & Palanisamy, P. N. (2008). Novel activated carbons from agricultural wastes and their characterization. Journal of Chemistry, 5(2), 409-426.

https://doi.org/10.1155/2008/902073

Ly, T. B., Pham, C. D., Bui, K. D., Nguyen, D. A., Le, L. H., & Le, P. K. (2024). Conversion strategies for durian agroindustry waste: value-added products and emerging opportunities. Journal of Material Cycles and Waste Management, 26(3), 1245-1263.

https://doi.org/10.1007/s10163-024-01928-4

Tzollas, N., Zachariadis, G., Anthemidis, A., & Stratis, J., (2010). A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. International Journal of Environmental and Analytical Chemistry, 90(2) 115-126.

https://doi.org/10.1080/03067310902962528

Fu, J., Zhang, J., Jin, C., Wang, Z., Wang, T., Cheng, X., & Ma, C. (2020). Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process. Bioresource Technology, 310, 123413.

https://doi.org/10.1016/j.biortech.2020.123413

Most read articles by the same author(s)

<< < 1 2