Tran Thi Bich Quyen * and Doan Van Hong Thien

* Correspondence: Tran Thi Bich Quyen (email: ttbquyen@ctu.edu.vn)

Main Article Content

Abstract

This work describes the rapid route to monodispersed silver nanocubes. By adding a trace amount of sodium borohydride and clorohydride acid to the conventional polyon synthesis, the reaction time was significantly shortened from 16-26 h to 4-5 h, increasing both the rate of production and uniformly the shape of monodispersed nanocubes of 40; 60 and 70 nm in size. The synthesized Ag nanocubes have been characterized by UV–vis, TEM, and XRD. Our results show that the SERS technique is able to detect Rd3B within wide concentration range, i.e. 10-14 – 10-8 M, with lower limit of detection (LOD) being 10-14 M. It  demonstrates that the Ag nanocubes have potential applications in SERS for the detection of biomolecules and biomarkers (or dye molecules) to early detection and diagnosis of cancers or serious diseases.
Keywords: Biomolecules, dye molecules, Rhodamine 3B (Rd3B), silver nanocubes (Ag NCBs), surface-enhanced Raman scattering (SERS)

Article Details

References

Blin, B., Fievet, F., Beaupere, D., Figlarz, M., 1989. Oxydation duplicative de l'éthylène glycol dans un nouveau procédé de préparation de poudres métalliques. Nouv. J. Chim. 13: 67-72.

Chan S., K.S., Koo T. W., Lee L. P. and Berlin A. A., 2003. Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores. Adv. Mater. 15: 1595-1598.

Chen, S., Yang, Y., 2002. Magnetoelectrochemistry of Gold Nanoparticle Quantized Capacitance Charging. Journal of the American Chemical Society. 124: 5280-5281.

Chen, M., Kim, J., Liu, J.P., Fan, H., Sun, S., 2006. Synthesis of FePt Nanocubes and Their Oriented Self-Assembly. Journal of the American Chemical Society. 128: 7132-7133.

Dick, L.A., McFarland, A.D., Haynes, C.L., Van Duyne, R.P., 2002. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. The Journal of Physical Chemistry B. 106: 853-860.

Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K., Ben-Yakar, A., 2007. Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods. Nano Lett. 7: 941-945.

El-Sayed, M.A., 2001. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research. 34: 257-264.

Halperin, W.P., 1986. Quantum size effects in metal particles. Reviews of Modern Physics. 58: 533-606.

Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., Halas, N.J., 2003. Controlling the surface enhanced Raman effect via the nanoshell geometry. Applied Physics Letters. 82: 257-259.

Jana, N.R., Gearheart, L., Murphy, C.J., 2001. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B. 105: 4065-4067.

Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G., 2001. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science. 294: 1901-1903.

Jin, R., Charles Cao, Y., Hao, E., Metraux, G.S., Schatz, G.C., Mirkin, C.A., 2003. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature. 425: 487-490.

Kamat, P.V., 2002. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. The Journal of Physical Chemistry B. 106: 7729-7744.

Karthikeyan, B., Loganathan, B., 2012. Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater. Lett. 85: 53-56

Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., 2003. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B. 107: 668-677.

Kim, Y., Johnson, R.C., Hupp, J.T., 2001. Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions. Nano Letters. 1: 165-167.

Kim, F., Song, J.H., Yang, P., 2002. Photochemical Synthesis of Gold Nanorods. Journal of the American Chemical Society. 124: 14316-14317.

Kottmann, J.P., Martin, O.J.F., Smith, D.R., Schultz, S., 2001. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B. 64: 235402.

Lewis, L.N., 1993. Chemical catalysis by colloids and clusters. Chemical Reviews. 93: 2693-2730.

Lin, X.Z., Teng, X., Yang, H., 2003. Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor. Langmuir. 19: 10081-10085.

Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., Atwater, H.A., 2001. Plasmonics—A Route to Nanoscale Optical Devices. Advanced Materials. 13(19).

Murphy, C.J., Jana, N.R., 2002. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater. 14: 80-82.

Nath, N., Chilkoti, A., 2002. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface. Analytical Chemistry. 74: 504-509.

Nicewarner-Peña, S.R., Freeman, R.G., Reiss, B.D., He, L., Peña, D.J., Walton, I.D., Cromer, R., Keating, C.D., Natan, M.J., 2001. Submicrometer Metallic Barcodes. Science. 294: 137-141.

Nie, S., Emory, S.R., 1997. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 275: 1102-1106.

Novak, J.P., Brousseau, L.C., Vance, F.W., Johnson, R.C., Lemon, B.I., Hupp, J.T., Feldheim, D.L., 2000. Nonlinear Optical Properties of Molecularly Bridged Gold Nanoparticle Arrays. Journal of the American Chemical Society. 122: 12029-12030.

Roll, D., Malicka, J., Gryczynski, I., Gryczynski, Z., Lakowicz, J.R., 2003. Metallic Colloid Wavelength-Ratiometric Scattering Sensors. Analytical Chemistry. 75: 3440-3445.

Sershen, S.R., Westcott, S.L., Halas, N.J., West, J.L., 2002. Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters. 80: 4609-4611.

Sun, Y., Xia, Y., 2002. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 298: 2176-2179.

Sun, Y., Mayers, B., Herricks, T., Xia, Y., 2003. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters. 3: 955-960.

Taton, T.A., Mirkin, C.A., Letsinger, R.L., 2000. Scanometric DNA Array Detection with Nanoparticle Probes. Science. 289: 1757-1760.

Templeton, A.C., Wuelfing, W.P., Murray, R.W., 2000. Monolayer-Protected Cluster Molecules. Accounts of Chemical Research. 33: 27-36.

Teng, X., Black, D., Watkins, N.J., Gao, Y., Yang, H., 2003. Platinum-Maghemite Core−Shell Nanoparticles Using a Sequential Synthesis. Nano Letters. 3: 261-264.

Tkachenko, A.G., Xie, H., Coleman, D., Glomm, W., Ryan, J., Anderson, M.F., Franzen, S., Feldheim, D.L., 2003. Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting. Journal of the American Chemical Society. 125: 4700-4701.

Thanh, N.T.K., Rosenzweig, Z., 2002. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Analytical Chemistry. 74: 1624-1628.

Wang, H., Huff, T.B., Zweifel, D.A., He, W., Low, P.S., Wei, A., Cheng, J.-X., 2005. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA. 102: 15752-15756.

Wang, Z.L., Gao, R.P., Nikoobakht, B., El-Sayed, M.A., 2000. Surface Reconstruction of the Unstable {110} Surface in Gold Nanorods. J. Phys. Chem. B. 104: 5417-5420.

Wiley, B., Sun, Y., Mayers, B., Xia, Y., 2005. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry – A European Journal. 11: 454-463.

Wiley, B.J., Xiong, Y., Li, Z.-Y., Yin, Y., Xia, Y., 2006. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds. Nano Letters. 6: 765-768.

Yu, Chang, S.-S., Lee, C.-L., Wang, C.R.C., 1997. Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B. 101: 6661-6664.

Most read articles by the same author(s)