Le Thi Anh Thu , Tran Bao Bao , Ho Ngoc Tri Tan , Cao Luu Ngoc Hanh , Ngo Truong Ngoc Mai , Luong Huynh Vu Thanh and Huynh Giao Dang *

* Corresponding author (dhgiao@ctu.edu.vn)

Main Article Content

Abstract

Antibiotics play an important role in disease treatment; however, they are also a threat to public health and the ecosystem. Therefore, a bimetallic CuCo-ZIFs catalyst was manufactured through the ultrasonic-assisted solvothermal method to activate H2O2 towards the removal of tetracycline (TC) in an aqueous environment, a polluting broad-spectrum antibiotic model. PXRD, SEM, TEM, EDX, TGA, FT-IR, and BET analyses indicated that CuCo-ZIFs cubic crystals were successfully synthesized with high crystallinity, large specific surface area, and ideal thermal stability. Factors affecting the TC removal were investigated, including CuCo-ZIFs dosage, H2O2 concentration, treatment time, initial TC concentration, and reaction temperature. The results showed that the CuCo-ZIFs/H2O2 catalytic system was capable of effectively handling TC, with about 93.9% of TC removed in the presence of 0.3 g.L-1 CuCo-ZIFs, 0.01 mol.L-1 H2O2 at room temperature within 30 min. Conclusively, this study contributes to expanding the application potential of bimetallic CuCo-ZIFs materials to eliminate antibiotic residues in an aqueous environment and inspire research on environmental improvement.

Keywords: Advanced oxidation process, bimetallic ZIF-67, hydrogen peroxide, tetracycline removal, zeolitic-imidazole frameworks

Article Details

References

Abuzalat, O., Tantawy, H., Basuni, M., Alkordi, M. H., & Baraka, A. (2022). Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water. RSC Advances, 12(10), 6025-6036. https://doi.org/10.1039/D2RA00218C

Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483-493. https://doi.org/10.1016/j.envres.2018.11.040

Dang, H. G., Tuong, V. T., Thu, N. H. T., Van, B. N., Ho, N. T. T., & Pham, V. T. (2021). Bimetallic CuCo-Zeolitic imidazole frameworks (CuCo-ZIFs): Synthesis and characterization. Can Tho University Journal of Science, 13(1), 78-84. https://doi.org/10.22144/ctu.jen.2021.010

Fan, B., Tan, Y., Wang, J., Zhang, B., Peng, Y., Yuan, C.,... Cui, S. (2021). Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): a review. Processes, 9(9), 1644. https://doi.org/10.3390/pr9091644

Fu, H., Wang, R., Xu, Q., Laipan, M., Tang, C., Zhang, W., & Ling, L. (2021). Facile construction of Fe/Pd-doped graphite carbon nitride for effective removal of doxorubicin: Performance, mechanism and degradation pathways. Applied Catalysis B: Environmental, 299, 120686. https://doi.org/10.1016/j.apcatb.2021.120686

Giao, D. H., Yen, P. Q., & Me, P. T. T., Doan Van Hong. (2019). ZIF-67: Synthesis in ethanol and study adsorption capacity on methyl orange. Can Tho University Journal of Science, 55(2), 1-8. https://doi.org/10.22144/ctu.jvn.2019.031

Honarmandrad, Z., Sun, X., Wang, Z., Naushad, M., & Boczkaj, G. (2023). Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation–A review. Water Resources and Industry, 29, 100194. https://doi.org/10.1016/j.wri.2022.100194

Hu, Z., Guo, Z., Zhang, Z., Dou, M., & Wang, F. (2018). Bimetal zeolitic imidazolite framework-derived iron-, cobalt-and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Applied Materials & Interfaces, 10(15), 12651-12658. https://doi.org/10.1021/acsami.8b00512

Ighalo, J. O., Rangabhashiyam, S., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G., & Igwegbe, C. A. (2022). Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption–a review. Journal of Industrial Engineering Chemistry, 105, 34-48. https://doi.org/10.1016/j.jiec.2021.09.029

Ince, N. H. (2018). Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrasonics Sonochemistry, 40, 97-103. https://doi.org/10.1016/j.ultsonch.2017.04.009

Le, T. T., Dang, B. H., Nguyen, T. Q., Nguyen, D. P., & Dang, G. H. (2023). Highly efficient removal of tetracycline and methyl violet 2B from aqueous solution using the bimetallic FeZn-ZIFs catalyst. Green Processing and Synthesis, 12(1), 20230122. https://doi.org/10.1515/gps-2023-0122

Lei, X., Lei, Y., Zhang, X., & Yang, X. (2021). Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. Journal of Hazardous Materials, 408, 124435. https://doi.org/10.1016/j.jhazmat.2020.124435

Lima, V. B., Goulart, L. A., Rocha, R. S., Steter, J. R., & Lanza, M. R. (2020). Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. Chemosphere, 247, 125807. https://doi.org/10.1016/j.chemosphere.2019.125807

Liu, H., Xu, G., & Li, G. (2021). Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. Journal of Colloid Interface Science, 587, 271-278. https://doi.org/10.1016/j.jcis.2020.12.014

Liu, M. K., Liu, Y. Y., Bao, D. D., Zhu, G., Yang, G. H., Geng, J. F., & Li, H. T. (2017). Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports, 7(1), 43717. https://doi.org/10.1038/srep43717

Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., & Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786, 147508. https://doi.org/10.1016/j.scitotenv.2021.147508

Nidheesh, P., & Rajan, R. (2016). Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Advances, 6(7), 5330-5340. https://doi.org/10.1039/C5RA19987E

Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J.,... Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. https://doi.org/10.1073/pnas.0602439103

Takdastan, A., Kakavandi, B., Azizi, M., & Golshan, M. (2018). Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A. Chemical Engineering Journal, 331, 729-743. https://doi.org/10.1016/j.cej.2017.09.021

Ulu, A. (2020). Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization. Journal of Materials Science, 55(14), 6130-6144. https://doi.org/10.1007/s10853-020-04452-6

Wang, J.-S. Y., Xiao-Hong, Xu, X., Ji, H., Alanazi, A. M., Wang, C.-C., Zhao, C.,... Yamauchi, Y. (2022). Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments. Chemical Engineering Journal, 431, 133213. https://doi.org/10.1016/j.cej.2021.133213

Wang, H., He, Q., Liang, S., Li, Y., Zhao, X., Mao, L., ... & Chen, L. (2021a). Advances and perspectives of ZIFs-based materials for electrochemical energy storage: Design of synthesis and crystal structure, evolution of mechanisms and electrochemical performance. Energy Storage Materials, 43, 531-578. https://doi.org/10.1016/j.ensm.2021.09.023

Wang, W., Chen, M., Wang, D., Yan, M., & Liu, Z. (2021b). Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Science of the Total Environment, 772, 145522. https://doi.org/10.1016/j.scitotenv.2021.145522

Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., Huang, D.,... and Li, L. (2020). ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392, 124851. https://doi.org/10.1016/j.cej.2020.124851

Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., Huang, D., ... & Zhou, X. (2020). ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392, 124851.

Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., & Jiang, G. (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the Total Environment, 753, 141975. https://doi.org/10.1016/j.scitotenv.2020.141975

Yang, Z., Jia, S., Zhuo, N., Yang, W., & Wang, Y. (2015). Flocculation of copper (II) and tetracycline from water using a novel pH-and temperature-responsive flocculants. Chemosphere, 141, 112-119. https://doi.org/10.1016/j.chemosphere.2015.06.050

Yao, B., Lua, S.-K., Lim, H.-S., Zhang, Q., Cui, X., White, T. J.,... & Dong, Z. (2021). Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous Mesoporous Materials, 314, 110777. https://doi.org/10.1016/j.micromeso.2020.110777

Yao, W., Guo, H., Liu, H., Li, Q., Wu, N., Li, L.,... and Yang, W. (2020). Highly electrochemical performance of Ni-ZIF-8/N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchemical Journal, 152, 104357. https://doi.org/10.1016/j.microc.2019.104357

Yuan, M., Fu, X., Yu, J., Xu, Y., Huang, J., Li, Q., & Sun, D. (2020). Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes. Chemosphere, 261, 127618. https://doi.org/10.1016/j.chemosphere.2020.127618

Zhang, X. W., Lan, M. Y., Wang, F., Wang, C. C., Wang, P., Ge, C., & Liu, W. (2022a). Immobilized NC/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: From batch to continuous process. Chemical Engineering Journal, 450, 138082. https://doi.org/10.1016/j.cej.2022.138082

Zhang, Y., Chu, C., Xu, Y., Ma, Z., & Han, H. (2022b). Bimetallic catalyst derived from copper cobalt carbonate hydroxides mediated ZIF-67 composite for efficient hydrogenation of 4-nitrophenol. Colloids Surfaces A: Physicochemical Engineering Aspects, 641, 128477. https://doi.org/10.1016/j.colsurfa.2022.128477

Most read articles by the same author(s)

<< < 1 2