Removal of tetracycline antibiotic from aqueous solution using bimetallic CuCo-ZIFs as an efficient catalyst in the presence of hydrogen peroxide
Main Article Content
Abstract
Antibiotics play an important role in disease treatment; however, they are also a threat to public health and the ecosystem. Therefore, a bimetallic CuCo-ZIFs catalyst was manufactured through the ultrasonic-assisted solvothermal method to activate H2O2 towards the removal of tetracycline (TC) in an aqueous environment, a polluting broad-spectrum antibiotic model. PXRD, SEM, TEM, EDX, TGA, FT-IR, and BET analyses indicated that CuCo-ZIFs cubic crystals were successfully synthesized with high crystallinity, large specific surface area, and ideal thermal stability. Factors affecting the TC removal were investigated, including CuCo-ZIFs dosage, H2O2 concentration, treatment time, initial TC concentration, and reaction temperature. The results showed that the CuCo-ZIFs/H2O2 catalytic system was capable of effectively handling TC, with about 93.9% of TC removed in the presence of 0.3 g.L-1 CuCo-ZIFs, 0.01 mol.L-1 H2O2 at room temperature within 30 min. Conclusively, this study contributes to expanding the application potential of bimetallic CuCo-ZIFs materials to eliminate antibiotic residues in an aqueous environment and inspire research on environmental improvement.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abuzalat, O., Tantawy, H., Basuni, M., Alkordi, M. H., & Baraka, A. (2022). Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water. RSC Advances, 12(10), 6025-6036. https://doi.org/10.1039/D2RA00218C
Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483-493. https://doi.org/10.1016/j.envres.2018.11.040
Dang, H. G., Tuong, V. T., Thu, N. H. T., Van, B. N., Ho, N. T. T., & Pham, V. T. (2021). Bimetallic CuCo-Zeolitic imidazole frameworks (CuCo-ZIFs): Synthesis and characterization. Can Tho University Journal of Science, 13(1), 78-84. https://doi.org/10.22144/ctu.jen.2021.010
Fan, B., Tan, Y., Wang, J., Zhang, B., Peng, Y., Yuan, C.,... Cui, S. (2021). Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): a review. Processes, 9(9), 1644. https://doi.org/10.3390/pr9091644
Fu, H., Wang, R., Xu, Q., Laipan, M., Tang, C., Zhang, W., & Ling, L. (2021). Facile construction of Fe/Pd-doped graphite carbon nitride for effective removal of doxorubicin: Performance, mechanism and degradation pathways. Applied Catalysis B: Environmental, 299, 120686. https://doi.org/10.1016/j.apcatb.2021.120686
Giao, D. H., Yen, P. Q., & Me, P. T. T., Doan Van Hong. (2019). ZIF-67: Synthesis in ethanol and study adsorption capacity on methyl orange. Can Tho University Journal of Science, 55(2), 1-8. https://doi.org/10.22144/ctu.jvn.2019.031
Honarmandrad, Z., Sun, X., Wang, Z., Naushad, M., & Boczkaj, G. (2023). Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation–A review. Water Resources and Industry, 29, 100194. https://doi.org/10.1016/j.wri.2022.100194
Hu, Z., Guo, Z., Zhang, Z., Dou, M., & Wang, F. (2018). Bimetal zeolitic imidazolite framework-derived iron-, cobalt-and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Applied Materials & Interfaces, 10(15), 12651-12658. https://doi.org/10.1021/acsami.8b00512
Ighalo, J. O., Rangabhashiyam, S., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G., & Igwegbe, C. A. (2022). Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption–a review. Journal of Industrial Engineering Chemistry, 105, 34-48. https://doi.org/10.1016/j.jiec.2021.09.029
Ince, N. H. (2018). Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrasonics Sonochemistry, 40, 97-103. https://doi.org/10.1016/j.ultsonch.2017.04.009
Le, T. T., Dang, B. H., Nguyen, T. Q., Nguyen, D. P., & Dang, G. H. (2023). Highly efficient removal of tetracycline and methyl violet 2B from aqueous solution using the bimetallic FeZn-ZIFs catalyst. Green Processing and Synthesis, 12(1), 20230122. https://doi.org/10.1515/gps-2023-0122
Lei, X., Lei, Y., Zhang, X., & Yang, X. (2021). Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. Journal of Hazardous Materials, 408, 124435. https://doi.org/10.1016/j.jhazmat.2020.124435
Lima, V. B., Goulart, L. A., Rocha, R. S., Steter, J. R., & Lanza, M. R. (2020). Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide. Chemosphere, 247, 125807. https://doi.org/10.1016/j.chemosphere.2019.125807
Liu, H., Xu, G., & Li, G. (2021). Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. Journal of Colloid Interface Science, 587, 271-278. https://doi.org/10.1016/j.jcis.2020.12.014
Liu, M. K., Liu, Y. Y., Bao, D. D., Zhu, G., Yang, G. H., Geng, J. F., & Li, H. T. (2017). Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports, 7(1), 43717. https://doi.org/10.1038/srep43717
Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., & Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786, 147508. https://doi.org/10.1016/j.scitotenv.2021.147508
Nidheesh, P., & Rajan, R. (2016). Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Advances, 6(7), 5330-5340. https://doi.org/10.1039/C5RA19987E
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J.,... Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. https://doi.org/10.1073/pnas.0602439103
Takdastan, A., Kakavandi, B., Azizi, M., & Golshan, M. (2018). Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A. Chemical Engineering Journal, 331, 729-743. https://doi.org/10.1016/j.cej.2017.09.021
Ulu, A. (2020). Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization. Journal of Materials Science, 55(14), 6130-6144. https://doi.org/10.1007/s10853-020-04452-6
Wang, J.-S. Y., Xiao-Hong, Xu, X., Ji, H., Alanazi, A. M., Wang, C.-C., Zhao, C.,... Yamauchi, Y. (2022). Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments. Chemical Engineering Journal, 431, 133213. https://doi.org/10.1016/j.cej.2021.133213
Wang, H., He, Q., Liang, S., Li, Y., Zhao, X., Mao, L., ... & Chen, L. (2021a). Advances and perspectives of ZIFs-based materials for electrochemical energy storage: Design of synthesis and crystal structure, evolution of mechanisms and electrochemical performance. Energy Storage Materials, 43, 531-578. https://doi.org/10.1016/j.ensm.2021.09.023
Wang, W., Chen, M., Wang, D., Yan, M., & Liu, Z. (2021b). Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Science of the Total Environment, 772, 145522. https://doi.org/10.1016/j.scitotenv.2021.145522
Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., Huang, D.,... and Li, L. (2020). ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392, 124851. https://doi.org/10.1016/j.cej.2020.124851
Wang, Z., Lai, C., Qin, L., Fu, Y., He, J., Huang, D., ... & Zhou, X. (2020). ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392, 124851.
Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., & Jiang, G. (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the Total Environment, 753, 141975. https://doi.org/10.1016/j.scitotenv.2020.141975
Yang, Z., Jia, S., Zhuo, N., Yang, W., & Wang, Y. (2015). Flocculation of copper (II) and tetracycline from water using a novel pH-and temperature-responsive flocculants. Chemosphere, 141, 112-119. https://doi.org/10.1016/j.chemosphere.2015.06.050
Yao, B., Lua, S.-K., Lim, H.-S., Zhang, Q., Cui, X., White, T. J.,... & Dong, Z. (2021). Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous Mesoporous Materials, 314, 110777. https://doi.org/10.1016/j.micromeso.2020.110777
Yao, W., Guo, H., Liu, H., Li, Q., Wu, N., Li, L.,... and Yang, W. (2020). Highly electrochemical performance of Ni-ZIF-8/N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchemical Journal, 152, 104357. https://doi.org/10.1016/j.microc.2019.104357
Yuan, M., Fu, X., Yu, J., Xu, Y., Huang, J., Li, Q., & Sun, D. (2020). Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes. Chemosphere, 261, 127618. https://doi.org/10.1016/j.chemosphere.2020.127618
Zhang, X. W., Lan, M. Y., Wang, F., Wang, C. C., Wang, P., Ge, C., & Liu, W. (2022a). Immobilized NC/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: From batch to continuous process. Chemical Engineering Journal, 450, 138082. https://doi.org/10.1016/j.cej.2022.138082
Zhang, Y., Chu, C., Xu, Y., Ma, Z., & Han, H. (2022b). Bimetallic catalyst derived from copper cobalt carbonate hydroxides mediated ZIF-67 composite for efficient hydrogenation of 4-nitrophenol. Colloids Surfaces A: Physicochemical Engineering Aspects, 641, 128477. https://doi.org/10.1016/j.colsurfa.2022.128477