Fabrication of PZT Thick Film by Electrophoretic Deposition on the Platinum Substrate
Main Article Content
Abstract
PbZrxTi1-xO3 compositions near morphotropic phase boundary have been reported to have high piezoelectric properties. In this study, Pb(Zr0.5Ti0.5)O3 (PZT 50/50) powder was produced by the solid-state reaction from the relevant oxides at 950oC. Phase analysis using X-ray diffraction revealed the single phase of the tetragonal perovskite structure. PZT thick film was fabricated by electrophoretic deposition of the resulted PZT powder onto the Pt substrate. The electrophoretic deposition process was conducted in an ethanol medium, and the effects of deposition parameters such as pH, applied voltage and deposition time on the film thickness were investigated. A green film with a maximum thickness of ~95 μm and sintered film with a maximum thickness of 80±2 μm were prepared. The effects of sintering atmosphere and temperatures on phase transformation and microstructures of PZT film were evaluated using X-ray diffraction and scanning electron microscopy. At room temperature, a PZT film of 68 ± 2 μm thickness has a relative permittivity of 477 ± 13 and ~ 9,500 at TC = 405oC, showing typical dielectric properties.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Besra, L. & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52(1), 1-61. https://doi.org/10.1016/j.pmatsci.2006.07.001
Carter, C. B. & Norton, M. G. (2013). Ceramic Materials: Science and Engineering. Springer, 2nd Edition.
Chaudhari, V. A. & Bichile, G. K. (2013). Smart Materials Research. Synthesis, Structural, and Electrical Properties of Pure PbTiO3 Ferroelectric Ceramics, 2013, 147524. http://dx.doi.org/10.1155/2013/147524
Doungdaw, S., Uchikoshi, T., Noguchi, Y., Eamchotchawalit, C., & Sakka, Y. (2005). Electrophoretic deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Science and Technology of advanced materials, 6(8), 927. https://doi.org/10.1016/j.stam.2005.09.002
Es-Souni, M., Kuhnke, M., Piorra, A. & Solterbeck, C. H. (2005). Pyroelectric and piezoelectric properties of thick PZT films produced by a new sol–gel route. Journal of the European Ceramic Society, 25(12), 2499–2503. https://doi.org/10.1016/j.jeurceramsoc.2005.03.090
Frantti, J., Lappalainen, J., Eriksson, S., Lantto, V., Nishio, S., Kakihana, M., Ivanov, S. and Rundlöf, H. (2000). Neutron diffraction studies of Pb(ZrxTi1-x)O3 ceramics. Japanese Journal of Applied Physics, 39(9B) 5697. https://doi.org/10.1143/jjap.39.5697
Hata, T., Kawagoe, S., Zhang, W., Sasaki, K. & Yoshioka, Y. (1998). Proposal of new mixture target for PZT thin films by reactive sputtering. Vacuum, 51, 665–671.
Hsu, Y. C., Wu, C. C., Lee, C. C., Cao, G. Z. & Shen, I. Y. (2004). Demonstration and characterization of PZT thin film sensor and actuators for meso- and micro-structures. Sensors and Actuators A: Physical, 116(3), 369–377. https://doi.org/10.1016/j.sna.2004.05.024
Jaffe, B., Cook, W. R. & Jaffe, H. (1971). Piezoelectric Ceramics. Academic Press, London.
Jun, B. S. & Joo, H. K. (2008). Suspension stability of Pb(Zr0.58 TiO0.42)O3 nano-particles during electrophoretic deposition. Journal of Physics and Chemistry of Solids, 69(5,6), 1330-1333. https://doi.org/10.1016/j.jpcs.2007.10.130
Kalinina, E. G. & Pikalova, E. Y. (2019). New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russian Chemical Reviews, 88(12), 1179-1219.
Kuepper, H., Leuerer, T., Schnakenberg, U., Mokwa, W., Hoffmann, M., Schneller, T., Boettger, U. & Waser, R. (2002). PZT thin film for piezoelectric microactuator applications. Sensors and Actuators A, 97-98, 680–684.
Lee, B. Y., Cheon C., Kim, J. S., Bang, K. S. B., Kim, J. C. & Lee, H. G. (2002). Low Temperature Firing of PZT Thick Films Prepared by Screen Printing Method. Materials Letters, 56(4), 518-521. https://doi.org/10.1016/S0167-577X(02)00543-8
Ma, J. & Cheng, W. (2002). Deposition and packing study of sub-micron PZT ceramics using electrophoretic deposition Materials Letters, 56, 721-727. https://doi.org/10.1016/S0167-577X(02)00602-X
Ma, J., Zhang, R., Liang, C.H. & Weng, L. (2003). Colloidal characterization and electrophoretic deposition of PZT, Materials Letters, 57, 4648–4654. https://doi.org/10.1023/a:1025092506583
Mikeska, T. & Cannon, W. R. (1988). Non-aqueous dispersion properties of pure barium titanate for tape casting. Colloids and Surfaces, 29(3), 305–321. https://doi.org/10.1016/0166-6622(88)80125-2
Miyazawa, K., Ito, K. & Maeda, R. (2000). Structure and electrical properties of multilayer PZT films prepared by sol–gel processing. Ceramics International, 26(5), 501–506. https://doi.org/10.1016/S0272-8842(99)00085-1
Mills, S. C., Smith, C.S., Arnold, D. P. & Andrew, J. S. (2020). Electrophoretic deposition of iron oxide nanoparticles to achieve thick nickel/iron oxide magnetic nanocomposite films. AIP Advances, 10(1), 015308. https://doi.org/10.1063/1.5129797
Mittal, G. & Rhee, K. Y. (2021). Electrophoretic deposition of graphene on basalt fiber for composite applications. Nanotechnology Reviews, 10(1), 158-165. https://doi.org/10.1515/ntrev-2021-0011
Moulson, A. J. & Herbert, J. M. (2003). Electroceramics. John Wiley & Son, Sussex.
Ng, S. Y. & Boccaccini, A. R. (2005). Lead zirconate titanate films on metallic substrates by electrophoretic deposition. Material Science and Engineering B, 116, 208-214. https://doi.org/10.1016/j.mseb.2004.10.013
Piticescu, R. M., Moisin, A. M., Taloi, D., Badilita, V. & Soare, I. (2004). Hydrothermal synthesis of ultradisperse PZT powders for polar ceramics. Journal of the European Ceramic Society, 24, 931–935. https://doi.org/10.1016/S0955-2219(03)00545-4
Rehman, M. A. U., Chen, Q., Braem A., Shaffer, M. S. P. & Boccaccini, A. R. (2021). Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. International Materials Reviews. 66(8), 533-562. https://doi.org/10.1080/09506608.2020.1831299
Sarkar, P. & Nicholson, P. S. (1996). Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of American Ceramic Society, 79, 1987–2002. https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
Setter, N. (2001). Electroceramics: looking ahead. Journal of the European Ceramic Society, 21, 1279-1293. https://doi.org/10.1016/S0955-2219(01)00217-5
Szklarska, M., Losiewicz, B., Dercz, G., Maszybrocka, J., M., Marzena, Baron, M. R., Stach, S. (2020). Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution. RSC Advance, 23, 13386-13393. https://doi.org/10.1039/D0RA01481H
Tassel, J.V. & Randall, C.A. (1999). Electrodeposition and sintering of thin/thick PZT films. Journal of European Ceramic Society, 19, 955-958. https://doi.org/10.1016/S0955-2219(98)00352-5
Wang, G., Sakar, P. & Nicholson, P. S. (1997). Influence of acidity on the electrostatic stability of alumina suspensions in ethanol. Journal of the American Ceramic Society, 80(4), 965-972.https://doi.org/10.1111/j.1151-2916.1997.tb02928.x
Wu, A. & Vilarinho, P. M. (2006). Electrophoretic Deposition of Lead Zirconate Titanate films on Metal Foils for Embedded components. Journal of the American Ceramic Society, 89(2), 575-586. https://doi.org/10.1111/j.1551-2916.2005.00732.x
Yusoff, N. H., Osman, R.A.M., Idris, M.S., Muhsen, K. N., Nor & N. I. M. (2020). Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO3. AIP Conference Proceedings. 2203, 020038. https://doi.org/10.1063/1.5142130